Hands-on Session: Detection and Spectroscopic Characterization of Transiting Exoplanets with the James Webb Space Telescope

> Nikole K. Lewis JWST Project Scientist Space Telescope Science Institute

Why Transiting Extrasolar Planets?

Currently more than 3000 confirmed transiting extrasolar planets!

Probes Pressures 100-1 mbar Near Planetary Limb

In the Era of Webb....

Greene et al. (2016)

In the Era of Webb....

Greene et al. (2016)

The Near Infrared Imager and Slitless Spectrograph Single Object Slitless Spectroscopy mode: NIRISS SOSS

Beichman et al. (2015)

The participants in this hands-on exercise will complete a three-step process to detect and characterize the planet in their JWST NIRISS SOSS data

- 1. Work with high-level data products from the JWST pipeline to find the planetary transit as a function of wavelength.
- Use MCMC-based fitting tools to measure changes in the planetary radius with wavelength to find the planetary spectrum from 0.6 to 2.5 microns.
- 3. Determine the atmospheric composition of the planet using spectroscopic retrieval tools.

Work with high-level data products from the JWST pipeline to find the planetary transit as a function

of wavelength.

Sagan Summer Work 2016 Is There a Planet in My Data?

re re<mark>ali</mark>stic data and c

se-free light curve.

Use MCMC-based fitting tools to measure changes in the planetary radius with wavelength to find the planetary spectrum from 0.6 to 2.5 microns.

batman: BAsic Transit Model cAlculatioN in Python

© Laura Kreidberg, Kreidberg (2015)

Determine the atmospheric composition of the planet using spectroscopic retrieval tools.

Goals of Transit Hands-on Session

- Get participants familiar with the types of data products that will be produced by JWST pipeline and delivered to MAST archive.
- Help participants understand the basics of transit data and how to extract a planetary spectrum given spectroscopic time-series observations.
- Guide participants through a robust process for determining exoplanet atmospheric composition.
- Introduce participants to python, which will be the language in which all JWST pipeline modules, tools, etc. will be built.

Questions?

