
Light curve computation in
binary microlensing

Valerio Bozza

University of Salerno, Italy

•  Our purpose is to calculate microlensing light curves

•  … that is the magnification of a given source that passes
behind a given binary lens.

Our goal

-2 -1.5 -1 -0.5 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0.5

1

1.5

2

-2 -1 0 1 2

2

4

6

8

10

•  For a given source position and size and for a given lens
model, we need to calculate the magnification factor

S

I
I

A

A∑
=µ

•  We must find the images and calculate their area.

Our goal

-1.5 -1 -0.5 0 0.5 1 1.5

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

-1 -0.5 0 0.5 1 1.5 2

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

Summary

•  Point-source magnification (Solving the lens equation)

•  Inverse ray-shooting

•  Finite-source approximations (Quadrupole and Hexadecapole)

•  Contour integration

•  In order to reach this goal, we will take several steps:

•  Full calculations

•  VBBinaryLensing

•  Let us use complex notations (Witt 1990), in a frame
centered on the lower mass object:

Lens equation

z
m

sz
mz 21 −
−

−=ζ

1. Point-source magnification

•  can be eliminated using the conjugate equation.
•  We end up with a fifth order polynomial equation

0)(
5

0
==∑

=i

i
i zczp

z
q
qm

q
m

+
=

+
=

1

1
1

2

1

•  Starting from an arbitrary initial condition z0, we can find a
root of a nth degree polynomial using Laguerre’s method:

Finding the roots

•  Once we have the first root z1, we can divide the original
polynomial by (z-z1) and find the next root.

()()21
1 GnHnG
nzz kk

−−±
−=+

()
()

()
()k

k

k

k

zp
zpGH

zp
zpG '' ;' 2 −==

•  After all roots have been found on the reduced polynomials,
they must be “polished” using the original full polynomial.

•  Numerical Recipes implements this algorithm by zroots
and laguer (Press et al.)

•  An optimized root finding algorithm was published by
Skowron and Gould (2012).
 http://www.astrouw.edu.pl/~jskowron/cmplx_roots_sg

1. Point-source magnification

Point-source magnification
•  Not all roots of p(z) are images.

They must be checked with the original lens equation.
•  When the source is outside the caustics, two roots are

spurious and must be discarded.

•  For each image we can calculate the magnification by the
inverse Jacobian

()
2

1

1

1

z

II zJ
∂
∂

−

−
==

ζ
µ

() 2
2

2
1

II z
m

sz
m

z
+

−
=

∂

∂ζ

•  The magnification of a point-source by a binary lens is then

∑=
I

Iµµ

1. Point-source magnification

Finite-source effect
2. Finite-source approximations

•  We know that binary lenses have extended caustics where
the magnification diverges.

•  Finite source effects show up much more often than in the
single lens case.

•  Direct integration in the
source plane is extremely
unstable due to divergences.

•  Alternative algorithms
needed.

∫=
source

PSFS yd 2µµ

Quadrupole and Hexadecapole
•  Far from caustics, we can Taylor expand the magnification

and take limb darkening into account
 (Pejcha & Heyrovsky 2007; Gould 2008; Cassan 2017)

...
35
111

35
11

2

4
4

2
2

0 +⎟
⎠

⎞
⎜
⎝

⎛ Γ−+⎟
⎠

⎞
⎜
⎝

⎛ Γ−+=
ρρ AAAAFS

•  The coefficients can be obtained by averaging the
magnification calculated on few points on the boundary:

•  Quadrupole: += ,
2

2 ρρ AA

•  Hexadecapole:
2

2
,,4

4
,,2/2

2 2
 ;

3
16

ρρρ ρρρρ A
AA

A
AA

A −
+

=
−

= ×+++

() ()[] 0

3

0
4
1

, 2/sin,2/cos AjjAA
j

−= ∑
=

+ πρπρρ

2. Finite-source approximations

Validity range
ρ = 0.01
Accuracy = 0.01

ρ = 0.001
Accuracy = 0.01

o Point-source valid
n Quadrupole valid
n Hexadecapole valid
n  Full calculation needed

2. Finite-source approximations

Validity range
ρ = 0.01
Accuracy = 0.01

o Point-source valid
n Quadrupole valid
n Hexadecapole valid
n  Full calculation needed

ρ = 0.1
Accuracy = 0.01

2. Finite-source approximations

Inverse ray shooting
3. Inverse ray-shooting

•  For each point in the lens plane z, the lens
map gives the position ζ in which a source
should lie in order to have an image in z.

z
m

sz
mz 21 −
−

−=ζ

O
S

I

•  By scanning the whole lens plane, we can find all images.
•  The area of the images is proportional to the number of

rays landing at the source.

•  Every ray requires little computation.
•  Large numbers of rays needed to be accurate.

z ζ

•  Limb darkening obtained by weighing rays by the source
brightness at landing point.

Magnification maps
3. Inverse ray-shooting

•  A uniform scansion of the lens plane results in a magnification
map in the lens plane. (Wambsganns 1992, 1997)

•  This can be re-used for
any source trajectories on
the same lens model.

•  A broad search in the
parameter space is
cheap for fixed s and q.

Image-centered ray-shooting
3. Inverse ray-shooting

•  First solve the lens
equation for the
center of the
source.

•  Then shoot rays
around to get all
the images
(Bennett & Rhie 1996;
Bennett 2010)

•  Polar coordinates
help diminish the
number of rays.

Contours for driving ray-shooting
3. Inverse ray-shooting

•  For high-magnification events, ray
shooting can be limited to an annulus
around the Einstein ring
(Dong et al. 2006)

•  Light rays can be collected in
hexagonal pixels

•  Check pixels instead of rays
(Dong et al. 2009)

•  Otherwise, the regions in which to
shoot rays can be defined by the
boundaries of the images of a circle
larger than the source.

Inverse-ray-shooting on GPUs
3. Inverse ray-shooting

•  The single ray shot is simple
enough to be parallelized on
GPUs.

•  Joe Ling (NZ) has developed a fast
working code for inverse-ray
shooting on GPUs.

•  Huge magnification maps can be generated quite rapidly.
•  However, if they are not re-used, still we need image-centered

shooting.

Inverse-ray-shooting: pros and cons
3. Inverse ray-shooting

Pros:
•  Individual rays require few operations
•  Can be implemented on GPUs
•  Magnification maps can be re-used
•  Incorporates limb darkening

Cons:
•  Large number of rays (scales as the area)
•  Denser sampling required for smaller sources
•  For non-static lenses, maps cannot be re-used

•  Contour integration concept:
The area enclosed in a curve is expressed by a simple
contour integral on the boundary.

•  We only need to find the boundaries of the images

•  A surface integral becomes a one-dimensional integral

•  In principle this is much faster and very elegant
•  In practice, a lot of work is required to keep everything

under control.

Contour Integration Concept
4. Contour Integration

 (Schramm & Kayser, 1987; Dominik 1995; Gould & Gaucherel 1997;
Dominik 1998; VB 2010)

•  Green’s theorem: () ∫∫∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∂
−

∂
=+

∂ II
dx
L

dx
LdxdxdxLdxL

2

1

1

2
212211

 Note 1: ∂I is the counterclockwise boundary of I.
 Note 2: Green’s theorem is the two 2-d specification of Stokes’ theorem.

Green’s Theorem

•  If we want the area of the domain I we must choose

1
2

1

1

2 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∂
−

∂
dx
L

dx
L

•  Possible choices for (L1,L2) are (-x2,0), (0,x1), (-x2,x1)/2.

∫∫∫
∂∂∂

∧==−=
III

dxxdxxA dxx2
1

2112

•  Then the line integral takes the
equivalent forms

x1

x2

4. Contour Integration

•  Parameterization of the source boundary:

From source to image boundaries

θρζζ
θ

θ
ρ ie*0*0 sin
cos

+=⇔⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= yy

ρ* θ

4. Contour Integration

•  After inversion of the lens equation, for each θi we get 3 or
5 points zi,I lying on the boundaries of the images.

II III

I

IV

V

A B C

D

E

•  We need to associate the roots zi,I at step i with the roots
zi-1,I of the step i -1.

Reconstruction of image boundaries
•  We need to associate the roots xi,I at step i with the roots
xi-1,I of the step i -1.

•  The simplest way is to use the least distance criterium.
•  Only same parity solutions can be associated.

EiDiCiBiAi

ViIViIIIiIIiIi

ViIViIIIiIIiIi

,,,,,

,1,1,1,1,1

,2,2,2,2,2

xxxxx

xxxxx

xxxxx

−−−−−

−−−−−

!!!!!

4. Contour Integration

Reconstruction of image boundaries

•  The same can be done at destruction of two images.

•  If two new images are created at step i, we can recognize
them as the last two unmatched roots.

•  We must keep track of pairing between image boundaries
when they are created or destroyed (see next).

II
III

I

IV
V

A

B

C

D

E

4. Contour Integration

Reconstruction of image boundaries

•  The same can be done at destruction of two images.

•  If two new images are created at step i, we can recognize
them as the last two unmatched roots.

EiDiCiBiAi

IIIiIIiIi

IIIiIIiIi

,,,,,

,1,1,1

,2,2,2

xxxxx

xxx

xxx

−−−

−−−

!!!

•  We must keep track of pairing between image boundaries
when they are created or destroyed (see next).

4. Contour Integration

Contour integration by polygonal
•  The trapezium approximation gives the area of the

polygonal defined by our image boundary sample

x1

x2

() () ∑∑∫
−

=
+

−

=
++

∂

∧=−∧+≅∧=
1

0
1

1

0
112

1

2
1

4
1 n

i
ii

n

i
iiii

I

A xxxxxxdxx

•  Typically, the area is underestimated.
•  … with some exceptions.

4. Contour Integration

Contour integration by polygonal
•  We must multiply the contour integrals by the parities of

the boundaries:
∑
−

=
+∧=

1

0
12

1 n

i
iiII pA xx+

- •  For creation/destruction
cases, we need to add a
connection term.

()

()−+

+−

∧

∧

,last,last

,first,first

2
1
2
1

xx

xx for creation

for destruction +

-
c

d

4. Contour Integration

Summing up…
Steps in contour integration:
•  Run a root finder routine for each point in the source

boundary.
•  At each step you must put the roots in the correct image

boundary (least distance criterium) and keep track of
created and destroyed pairs.

•  Calculate the contour integral by polygonal approximation
for each boundary.

•  Sum up the contour integrals with the correct parity and
add a connection term for each creation/destruction.

4. Contour Integration

Order of the error
Let us estimate the order of the error

•  At each step, the contribution of the interval Δθ to the
contour integral is

•  The trapezium approximation is actually

•  Expanding in powers of Δθ, the difference is of third order

()

θ
θθ

θθ

ddA
i

i

II
I

III ∫∫
Δ+

Δ

ʹ∧=∧=Δ xxxx
2
1

2
1

() ()θθθ Δ+∧=Δ iIiI
t
IA xx

2
1)(

()3)(θΔ=Δ−Δ OAA I
t
I

4. Contour Integration

Parabolic correction

•  We can increase the accuracy without adding new points
to the boundary.
(VB, MNRAS 1365, 2966 (2010))

•  If we add the following correction to the trapezium

() ()[] 3)(

24
1

θ
θθθ
Δʹ́∧ʹ+ʹ́∧ʹ=Δ

Δ+ii IIII
p
IA xxxx

… the residual is of fifth order

()5)()(θΔ=Δ−Δ+Δ OAAA I
p
I

t
I

•  The wedge products of the derivatives can be calculated
analytically using the lens map.

4. Contour Integration

•  Similar parabolic corrections can be introduced for creation/
destruction terms.

Error control
•  In all numerical computations it is fundamental to have an

estimate of the errors.
•  The error estimators must be reliable but also cheap.

() ()

()

() 2
3,,

2

2

2,,

3
1,,

10
1

1
~

2
3
48
1

θ

θ
θ

θ
θθθ

ΔΔ=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

Δ

Δ
Δ=

Δʹ́∧ʹ−ʹ́∧ʹ=
Δ+

p
IiI

p
IiI

IIIIiI

AE

AE

E
ii

xxxx

•  These work in a complementary way and are
combinations of quantities already calculated.

4. Contour Integration

•  Similar estimators can be introduced for creation/
destruction terms and to unveil “hidden” images.

Error estimate at step i
•  Our error estimate for the step i is thus

()∑ ++=
I

iIiIiIi EEEE 3,,2,,1,,

•  If creation/destruction occurs at step i we add
)(

3
)(

2
)(

1
ccc

i EEEE ++=+
•  The total error in the area of all images is

δµ
πρ

<2
*

E

∑
−

=

=
1

0

n

i
iEE

•  At this point we are able to check if we have reached the
target accuracy δµ in the magnification:

•  If not, we must increase the sampling.

4. Contour Integration

Optimal sampling
•  We can pick the interval with the largest error

iEEi ii ∀≤ :ˆLet ˆ

•  … and add another point in the sample in the middle of
this interval:

2
ˆ 1ˆˆ ++
= ii θθ

θ

θ ̂

•  Then we just need to recalculate
the contour integral and the error
estimators in the new sub-
intervals.

•  In this way, sampling is increased
only where needed, avoiding
useless calculations.

4. Contour Integration

Limb darkening
•  Up to now, we have assumed a uniform brightness source.

•  In general, the source
profile is a function f(r),
normalized in such a way
that

() 12
1

0

=∫ drrrf

•  However, physical stars have a limb-darkened profile, e.g.
Milne’s linear law

() ()[]
*

2 with111
31

1
ρ
ρ

=−−−
−

= rra
a

rf

0.0 0.2 0.4 0.6 0.8 1.0
0.6

0.7

0.8

0.9

1.0

1.1

1.2

r

I

4. Contour Integration

Limb darkening
•  In order to account for limb darkening with

contour integration we may divide the source in
annuli.

•  Each source annulus is magnified by microlensing. The
exact contribution to the total amplification is

() () ϕϕµ
π

π

drrrfdrM
i

i

r

r
i ∫ ∫

−

=

1

2

0

,21

() () () ()∫ ʹʹʹ=
−

−
=

−

−
r

ii

ii
i rfrrdrF

rr
rFrFf

0
2

1
2

1 2 with

•  In each annulus we instead use a uniform brightness given
by the limb-darkened profile averaged over the annulus

[] ()∫ ∫
−

=−= −−

i

i

r

ri
iiiiiii drrdr

r
rrfM

1

2

0
2

2
11

2 ,21 re whe~ π

ϕϕµ
π

µµµ

4. Contour Integration

Sampling the source profile
•  Error estimators can be introduced also for limb darkening.

They are then used to drive the profile sampling.
•  We start with the two extremal annuli: the boundary (r=1)

and the center (r=0).
•  The new circle is put at an intermediate radius so that

the two new annuli give the same contribution to the
source luminosity:

r

() () () ()1−−=− jj rFrFrFrF

•  We keep introducing annuli
until the total error falls below
the target accuracy.

0.0 0.2 0.4 0.6 0.8 1.0

2.0

2.5

3.0

3.5

r

I�I

4. Contour Integration

Testing
•  This is a scatter plot of number of sampling points vs

magnification (target accuracy is 10-2).

4. Contour Integration

Testing
•  Summing up, at δµ=10-2 we get

- a speed-up of 4 thanks to parabolic correction
- a speed-up ranging from 3 to 20 thanks to optimal
sampling
- a slow-down from 2 to 10 if we include limb darkening

•  No redundant calculation thanks to error estimators!

4. Contour Integration

VBBinaryLensing
§  VBBinaryLensing is a code for the calculation of microlensing light

curves based on advanced contour integration (VB, MNRAS 1365, 2966 (2010)) .
§  Point-Source Point-Lens
§  Extended Source Point-Lens
§  Binary Source Point-Lens
§  Extended Source Binary Lens

§  C++ library.
§  Tested on Windows, Linux, Mac OS.
§  Importable in Python.
§  Source code is public (but no specific standard has been adopted!).

§  Higher order effects implemented:
§  Linear limb darkening
§  Annual and space parallax
§  Circular orbital motion

5. VBBinaryLensing

Release of VBBinaryLensing
§  VBBinaryLensing	is	available	at	

h"p://www.fisica.unisa.it/Gravita3onAstrophysics/VBBinaryLensing.htm.		
§  The	zip	file	contains:	

§  readmeVB.txt 	 	 	Generic	introductory	informa;on	
§  VBBinaryLensingLibrary.h 	 	C++	header	
§  VBBinaryLensingLibrary.cpp	 	C++	source	
§  main.cpp 	 	 	 	Sample	code	with	examples	and	 	

	 	 	 	 	instruc;ons.	
§  Makefile.dat 	 	 	Example	of	a	makefile	(courtesy	of	Zhu)	
§  howtopython.txt 	 	 	Instruc;ons	for	wrapping	the	library	in	

	 	 	 	 	Python	code	(courtesy	of	Hundertmark)	
§  OB151212coords.txt 	 	Sample	coordinate	file	for	an	event		

	 	 	 	 	(used	in	the	examples	in	main.cpp)	
§  satellite1.txt 	 	 	Table	for	the	posi;ons	of	a	satellite	for	

	 	 	 	 	space	parallax	calcula;on	(Spitzer)	
§  satellite2.txt 	 	 	Same	for	Kepler.	

5. VBBinaryLensing

Example	of	use	
#include <stdio.h>
#include “VBBinaryLensingLibrary.h”

int main()
{
 VBBinaryLensing VBBL;

 double Mag,s,q,y1,y2,Rs,accuracy;
 s=0.8; //separation
 q=0.1; // mass ratio
 y1=0.01; // source position
 y2=0.3;
 Rs=0.01; // source radius

 accuracy=1.e-2; // Required accuracy of the result
 Mag=VBBL.BinaryMag(s,q,y1,y2,Rs,accuracy);

 printf("Magnification = %lf\n",Mag);

 return 0;
}

5. VBBinaryLensing

Contour integration: pros and cons
•  Contour integration is a very elegant way to calculate the

microlensing magnification.

Pros:
•  1-d integration instead of 2-d integration (much faster!)
•  Faster on small sources
•  Only public code available, with large feedback from the

community.

Cons:
•  Complicated!
•  Limb darkening comes at a substantial cost.

Microlensing computation: outlook

•  Inverse-ray-shooting has already been implemented for
triple and multiple lenses.

•  Contour integration has never been tried beyond binary
lensing so far.

•  There is still room for optimizations, speed-up, parallelization
on different codes.

•  New ideas are always welcome.

•  The huge data flow from WFIRST will require very high
performance for microlensing calculations.

•  Multiple systems likely to show up.

