Overview of the Hands-On Sessions

Jennifer Yee & Etienne Bachelet

Big Picture

Using simulated WFIRST light curves, explore the kinds of microlensing planets WFIRST will find.

Goals

- Identify planetary perturbations in light curves
- Analytically calculate planetary microlensing parameters based on the light curves
- Perform a numerical fit to determine the exact planetary parameters
- Calculate the physical properties of the planet

Outline

- Monday:
 - Part I: Classify planets from the literature
 - Part II: Classify planets from simulated WFIRST data
- Tuesday: Calculate the parameters of a planet (Analytic)
- Wednesday: Calculate the parameters of the planet (Numerical)
- Thursday: Prepare presentations

Planet/No Planet?

Wednesday:

- Compare analytical estimation with the lightcurve
- Fit a single lens model to the lightcurve
- Fitting a planetary model using analytical guess as starting points

Thursday:

- What are the μ lensing properties of your planets?
- Show some **plots of your planetary perturbations**.
 - What microlensing features do your planets have in common?
 - Are they major image or minor image perturbations?
 - How long do the perturbations last?
- Make a plot showing the distribution of mass ratios and separations for the planets your group analyzed.
 - What is the typical mass ratio for your planets?
 - Are they inside or outside the Einstein ring?
 - Do your planets have a typical separation?

Thursday:

- What are the **physical properties** of your planets?
 - Assuming the lens is a 1.0 MSun G dwarf at 6
 kpc, what does that mean for the physical parameters of the planet (mass and semimajor axis)?
 - Repeat for a **0.3 MSun M dwarf** at 6 kpc.
- For both the G dwarf and M dwarf scenarios, make a plot showing **planet mass vs. physical separation** for your planets.
 - Show the snow line on these plots assuming a_{snow} = 2.7AU (M_{*} / M_{Sun})²
 - How do the physical parameters differ in the two cases?