Group Presentations

Each group was assigned a particular (and different) type of planet. Tell us about your planets.

What are the μ lensing properties of your planets?

- Show some plots of your planetary perturbations.
 - What microlensing features do your planets have in common?
 - Are they major image or minor image perturbations?
 - How long do the perturbations last?
- Make a plot showing the distribution of mass ratios and separations for the planets your group analyzed.
 - What is the typical mass ratio for your planets?
 - Are they inside or outside the Einstein ring?
 - Do your planets have a typical separation?

Recommendations for plotting:

 $x axis = log_s, limits = [-1, 1]$

y axis = log_q, limits = [-6, -1]

What are the physical properties of your planets?

- Assuming the lens is a 1.0 M_{sun} G dwarf at 6 kpc, what does that mean for the physical parameters of the planet (mass and semimajor axis)?
- Repeat for a 0.3 M_{Sun} M dwarf at 6 kpc.
- For both the G dwarf and M dwarf scenarios, make a plot showing planet mass vs. physical separation for your planets.
 - $\circ~$ Show the snow line on these plots assuming a_{_{snow}} = 2.7AU (M_ / M_{_{Sun}})^2
 - How do the physical parameters differ in the two cases?

Recommendations for plotting: x axis = separation, limits = [0, 10] y axis = separation, limits = [0.01 MEarth, 10,000 MEarth]

• What kind of planets did you analyze?

Useful Equations

mass ratio = q = m_{planet} / M_{star}

projected separation = a_{\perp} = s * r_{E} = s * θ_{E} * D_{lens}

$$\theta_{\rm E} = \sqrt{(\kappa * M_{\rm star} * \pi_{\rm rel})}$$

where

 κ = 8.14 mas M_{Sun}⁻¹

$$\pi_{\rm rel}$$
 = (AU / D_{lens}) - (AU / D_{source})

and you can assume $\rm D_{\rm source}$ = 8 kpc