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What	is	parallax?	



3	Types	of	Parallax	due	to	2	Effects	

•  MoDon	of	the	observer		
à	Orbital/Annual	Parallax	

•  SeparaDon	between	2	observers	
à 	Satellite	parallax	
à 	Terrestrial	parallax	



Lens	
Source	

Assume	a	frame	in	
which	the	lens	is	
moving	and	the	
source	is	staDonary.	



What	maKers	is	the	source-lens	
rela%ve	parallax.	

π rel =
AU
DLens

−
AU
DSource

…but	this	is	not	what	we	measure.	



A(t) = u(t)2 + 2
u(t) u(t)2 + 4

The	observed	magnificaDon	depends	
only	on	the	rela%ve	(projected)	

separaDon	between	the	source	and	lens.	
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The	basic	PSPL	curve	assumes	uniform,	recDlinear	
moDon	(i.e.	a	constant	rela%ve	velocity).	



We	only	care	about	the	rela%ve	speed	and	
the	displacement	Δu	(i.e.	rela%ve	to	the	
Einstein	ring).	

Lens	

Einstein	
Ring	

Source	

πE =
π rel
θE

microlens	
parallax	



Why	care	about	microlens	parallax?	

1.  It’s	physics.	
2.  It	lets	us	measure	physical	scales	(if	we	have	

θE):	
a.  	absolute	masses	for	the	lenses,	and	therefore	

the	planets.	
b.  	distances	to	the	lens	(planetary)	systems	
c.  (projected)	separa1ons	between	the	planet	and	

star	



The	lens	mass	is	measured	from	
lightcurve	features	without	measuring	
light	from	the	lens.	

Mstar=	θE/(κπE)	

κ	=	8.41	mas	(Msun)-1	



Fun	fact:		
Microlens	Parallax	Is	a	Vector!?	



2	Components	to	the	moDon	of	
Proxima	Centauri	(or	any	star)	

The Astrophysical Journal, 782:89 (9pp), 2014 February 20 Sahu et al.

Table 1
Details of the Source Stars

Parameter Source 1 Source 2 Proximaa

R.A. (J2000) 14:29:34.693 14:29:34.268
Decl. (J2000) −62:40:33.46 −62:40:34.91
F475W (“B”) 21.26 20.55 12.03
F555W (“V”) 20.36 19.89 11.33
F606W (“wide-V”) 19.61 19.29 (10.44a)
F814W (“I”) 17.78 17.93 (7.25a)
Date of closest approach 2014.80 ± 0.03 2016.16 ± 0.03

(2014 Oct 20 ± 10 days) (2016 Feb 26 ± 10 days)
Impact parameter 1.′′6 ± 0.′′1 0.′′5 ± 0.′′1

Note. a The magnitudes of Proxima in the F606W and F814W filters are determined from saturated images which are
uncertain by ±0.5 mag. All other magnitudes have uncertainty of ±0.05 mag.

F555W, F606W, and F814W filters. Since the background stars
are >8 mag fainter than Proxima, we obtained two sets of
observations, a short one with an exposure time of 0.5 s (the
minimum allowed exposure time with WFC3) in each filter and
a long one with an exposure time of 100 to 200 s. An extra
set of short and long exposures were obtained in the F555W
filter, which were dithered by about 4′′ with respect to the first
set. The two long exposures obtained in the F555W filter were
used to produce a cosmic-ray cleaned image of the field. Since
Proxima is heavily saturated in the longer exposures, care was
taken to choose a telescope orientation such that neither the
diffraction spikes nor the charge bleeding from Proxima would
affect the background sources. Proxima was not saturated in
the short exposures in the F475W and F555W filters, but was
slightly (!30%) saturated in the F606W and F814W filters.
The short exposures were used for photometry of Proxima
itself, and the long exposures were used for photometry of the
background stars. Even though we have used a large aperture
to take the charge bleeding into account in our photometry
in the saturated images (Gilliland 1994) in the F814W and
F606W filters, the photometric uncertainties in these filters are
expected to be higher. The photometric magnitudes for Proxima
(on the Vega-mag system) and the source stars along with the
estimated errors are listed in Table 1. We also examined the
2MASS source catalog for the IR magnitudes of the sources.
The 2MASS catalog shows a single source at this position, with
magnitudes of J = 16.089, H = 15.436, and Ks = 15.764,
and uncertainties of about ±0.07 mag. These magnitudes most
likely represent the combined light of both background sources.

Figure 2 shows our long-exposure HST image taken in the
F555W (V) filter. Also shown is the future path of Proxima
(green line), calculated using the Hipparcos proper motion and
parallax (ESA 1997), and taking into account the stellar posi-
tions as observed by HST on 2012 October 1. The uncertainty in
Proxima’s path is less than the width of the line during the time
interval shown here. As the figure shows, Proxima will actu-
ally pass between the two background stars labeled as “Source
1” and “Source 2,” affording two independent opportunities to
measure the relativistic light deflection and search for effects
of planetary companions. The closest passages will occur in
2014 October, with an impact parameter of 1.′′6 ± 0.′′1, and in
2016 February, with an impact parameter of 0.′′5 ± 0.′′1. This
prediction is confirmed through a second set of HST observa-
tions that we obtained in 2013 March. Details of the predicted
close encounters are given in Table 1. (We have an approved
program to obtain further HST observations at 10 different
epochs during 2014–2017. The predictions given in Table 1

Figure 2. Proxima Centauri field as observed with HST/WFC3 on 2012
October 1 in the F555W (V) filter, with north up and east to the left. The two
faint background sources are labeled “Source 1” and “Source 2.” The future path
of Proxima is shown in green, taking into account proper motion and parallax.
Considering the facts that (1) the proper motion of Proxima has an accuracy of
∼2 mas yr−1, (2) the direction of proper motion has an uncertainty of 0.◦036,
and (3) Proxima was observed by HST in 2012 October, the uncertainty in the
proper motion is less than the width of the trajectory during the time interval
shown in the figure. The locations and dates of closest approach of Proxima to
the two background sources are indicated. The closest approaches to the two
background stars will occur in 2014 October and 2016 February, at separations
of 1.′′6 ± 0.′′1 and 0.′′5 ± 0.′′1, respectively (see Table 1). Note that there is an
additional faint source about 0.′′3 southeast of Source 1, which is about 2.7 mag
fainter than Source 1 in the F555W filter.

will improve as we obtain further HST observations, and
the improved predictions will be made available at this Web
site: http://www.stsci.edu/∼ksahu. The exact time of the future
HST observations will be adjusted based on results obtained
from previous observations, in order to maximize the scientific
return.)

We note from Table 1 that the colors of both sources are
similar to or bluer than Proxima, but they are at least 8.5 mag
fainter than Proxima. That would imply that the distances to
these source stars are >60 pc, much larger than the distance
to Proxima. In our current analysis of predicting the closest
approaches, we have ignored the parallax and proper motion of
the source stars, which are expected to be small. This can be
rectified if our future HST observations show any parallax or
proper motion.

3

Sahu	et	al.	2014	ApJ	792,	89	



In	microlensing,	direcDon	maKers	only	
if	there	is	parallax.	

Normal	
Astronomy	 Microlensing	

Proper	
Mo;on	 Vector	 Scalar	

Parallax	 Scalar	 Vector	



The	magnificaDon	equaDon	depends	
only	on	the	scalar	u(t).	

A(t) = u(t)2 + 2
u(t) u(t)2 + 4



However,	microlens	parallax	does	
depend	on	direc;on.	

Displacement	
along	the	
trajectory	

Displacement	
perpendicular	to	

the	trajectory	
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Fig. 1.— Parallax effect for illustrative (left) and realistic (right) microlensing events. Bot-
tom: absolute trigonometric parallax and proper motion (ppm). Middle: relative trigonomet-
ric (lower/left labels) and microlensing (upper/right labels) ppm. Top: resulting lightcurves

from Earth (blue) and Sun (green).

Gould	&	Horne	2013,	ApJ,	779,	28	

Orbital	Parallax	
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Fig. 1.— Parallax effect for illustrative (left) and realistic (right) microlensing events. Bot-
tom: absolute trigonometric parallax and proper motion (ppm). Middle: relative trigonomet-
ric (lower/left labels) and microlensing (upper/right labels) ppm. Top: resulting lightcurves

from Earth (blue) and Sun (green).

Gould	&	Horne	2013,	ApJ,	779,	28	

Orbital	Parallax	
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Component	PARALLEL	to	lens	trajectory	
èASYMMETRIC	DistorDon	



Component	PERPENDICULAR	to	lens	
trajectory	è	SYMMETRIC	DistorDon	



Are	we	more	likely	to	see	annual	
parallax	for	an	event	with		
	
				tE	=	10	days		
or		
				tE	=	100	days?	



Microlens	parallax	is	easier	to	measure	
in		Spring	and	Fall.	



19
95
Ap
J.
..
45
4L
.1
25
A

Alcock	et	al.	1995:	First	detecDon	of	
microlens	parallax.	

Without	parallax,	the	point	lens	fit	cannot	
match	the	asymmetry	in	the	light	curve.	

4/23	 6/12	3/4	 7/23	



πE =
π rel
θE

(DL)	

(ML,	DL)	
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Figure 2. Light curve of OGLE-2011-BLG-0417. Notations are same as in Figure 1.
(A color version of this figure is available in the online journal.)

for thorough investigation of possible degeneracy of solutions.
We choose of s⊥, q, and α as the grid parameters because they are
related to the light curve features in a complex way such that a
small change in the values of the parameters can lead to dramatic
changes in the resulting light curve. On the other hand, the other
parameters are more directly related to the light curve features
and thus they are searched for by using a downhill approach.
For the χ2 minimization in the downhill approach, we use the
Markov Chain Monte Carlo (MCMC) method. Once a solution
of the parameters is found, we estimate the uncertainties of the
individual parameters based on the chain of solutions obtained
from MCMC runs.

To compute lensing magnifications affected by the finite-
source effect, we use the ray-shooting method (Schneider &
Weiss 1986; Kayser et al. 1986; Wambsganss 1997). In this
method, rays are uniformly shot from the image plane, bent
according to the lens equation, and land on the source plane.
Then, a finite magnification is computed by comparing the
number densities of rays on the image and source planes.
Precise computation of finite magnifications by using this
numerical technique requires a large number of rays and thus
demands heavy computation. To minimize computation, we
limit finite-magnification computation by using the ray-shooting
method only when the lens is very close to caustics. In the
adjacent region, we use an analytic hexadecapole approximation
(Pejcha & Heyrovský 2009; Gould 2008). In the region with
large enough distances from caustics, we use point-source
magnifications.

Table 2
Limb-darkening Coefficients

Quantity MOA-2011-BLG-090 OGLE-2011-BLG-0417

ΓV 0.52 0.71
ΓR 0.45 0.61
ΓI 0.37 0.51
Source type FV KIII
Teff (K) 6650 4660
vturb (km s−1) 2 2
log g (cm s−2) 4.5 2.5

In the finite magnification computation, we consider the
variation of the magnification caused by the limb darkening
of the source star’s surface. We model the surface brightness
profile of a source star as

Sλ = Fλ

πθ⋆
2

[
1 − Γλ

(
1 − 3

2
cos ψ

)]
, (7)

where Γλ is the linear limb-darkening coefficients, Fλ is the
source star flux, and ψ is the angle between the normal to the
source star’s surface and the line of sight toward the star.
The limb-darkening coefficients are set based on the source type
that is determined on the basis of the color and magnitude of the
source. In Table 2, we present the limb-darkening coefficients
used, the corresponding source types, and the measured de-
reddened color along with the assumed values of the effective

6

Shin	et	al.	2012	ApJ	755,	91	

Without	Parallax	

With	Parallax	

100	d	

8/27	
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Figure 2. Light curve of OGLE-2011-BLG-0417. Notations are same as in Figure 1.
(A color version of this figure is available in the online journal.)

for thorough investigation of possible degeneracy of solutions.
We choose of s⊥, q, and α as the grid parameters because they are
related to the light curve features in a complex way such that a
small change in the values of the parameters can lead to dramatic
changes in the resulting light curve. On the other hand, the other
parameters are more directly related to the light curve features
and thus they are searched for by using a downhill approach.
For the χ2 minimization in the downhill approach, we use the
Markov Chain Monte Carlo (MCMC) method. Once a solution
of the parameters is found, we estimate the uncertainties of the
individual parameters based on the chain of solutions obtained
from MCMC runs.

To compute lensing magnifications affected by the finite-
source effect, we use the ray-shooting method (Schneider &
Weiss 1986; Kayser et al. 1986; Wambsganss 1997). In this
method, rays are uniformly shot from the image plane, bent
according to the lens equation, and land on the source plane.
Then, a finite magnification is computed by comparing the
number densities of rays on the image and source planes.
Precise computation of finite magnifications by using this
numerical technique requires a large number of rays and thus
demands heavy computation. To minimize computation, we
limit finite-magnification computation by using the ray-shooting
method only when the lens is very close to caustics. In the
adjacent region, we use an analytic hexadecapole approximation
(Pejcha & Heyrovský 2009; Gould 2008). In the region with
large enough distances from caustics, we use point-source
magnifications.

Table 2
Limb-darkening Coefficients

Quantity MOA-2011-BLG-090 OGLE-2011-BLG-0417

ΓV 0.52 0.71
ΓR 0.45 0.61
ΓI 0.37 0.51
Source type FV KIII
Teff (K) 6650 4660
vturb (km s−1) 2 2
log g (cm s−2) 4.5 2.5

In the finite magnification computation, we consider the
variation of the magnification caused by the limb darkening
of the source star’s surface. We model the surface brightness
profile of a source star as

Sλ = Fλ

πθ⋆
2

[
1 − Γλ

(
1 − 3

2
cos ψ

)]
, (7)

where Γλ is the linear limb-darkening coefficients, Fλ is the
source star flux, and ψ is the angle between the normal to the
source star’s surface and the line of sight toward the star.
The limb-darkening coefficients are set based on the source type
that is determined on the basis of the color and magnitude of the
source. In Table 2, we present the limb-darkening coefficients
used, the corresponding source types, and the measured de-
reddened color along with the assumed values of the effective

6
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Table 3
Lensing Parameters

Parameters MOA-2011-BLG-090 OGLE-2011-BLG-0417

Standard Model Parallax Orbital+Parallax Standard Model Parallax Orbital+Parallax

χ2/dof 5207/5164 4718/5162 4636/5158 4415/2627 2391/2625 1735/2621
t0 (HJD′) 5688.331 ± 0.121 5691.563 ± 0.187 5690.409 ± 0.110 5817.302 ± 0.018 5815.867 ± 0.030 5813.306 ± 0.059
u0 0.3307 ± 0.0038 −0.0613 ± 0.0008 −0.0785 ± 0.0005 0.1125 ± 0.0001 −0.0971 ± 0.0003 −0.0992 ± 0.0005
tE (days) 94.10 ± 0.71 279.88 ± 0.27 220.40 ± 0.21 60.74 ± 0.08 79.59 ± 0.36 92.26 ± 0.37
s⊥ 0.981 ± 0.002 0.536 ± 0.002 0.606 ± 0.001 0.601 ± 0.001 0.574 ± 0.001 0.577 ± 0.001
q 0.611 ± 0.005 1.108 ± 0.026 0.892 ± 0.014 0.402 ± 0.002 0.287 ± 0.002 0.292 ± 0.002
α (rad) −0.181 ± 0.004 0.373 ± 0.005 0.317 ± 0.006 1.030 ± 0.002 −0.951 ± 0.002 −0.850 ± 0.004
ρ⋆ (10−3) 2.89 ± 0.03 0.54 ± 0.01 0.78 ± 0.01 3.17 ± 0.01 2.38 ± 0.02 2.29 ± 0.02
πE,N . . . 0.205 ± 0.003 0.159 ± 0.003 . . . 0.125 ± 0.004 0.375 ± 0.015
πE,E . . . −0.071 ± 0.005 −0.022 ± 0.004 . . . −0.111 ± 0.005 −0.133 ± 0.003
ds⊥/dt (yr−1) . . . . . . −0.031 ± 0.007 . . . . . . 1.314 ± 0.023
dα/dt (yr−1) . . . . . . 1.066 ± 0.005 . . . . . . 1.168 ± 0.076
s∥ . . . . . . 0.137 ± 0.008 . . . . . . 0.467 ± 0.020
ds∥/dt (yr−1) . . . . . . −0.784 ± 0.008 . . . . . . −0.192 ± 0.036

Note. HJD′ = HJD-2450000.

Figure 3. Caustic geometries and source trajectories of the best-fit models for
MOA-2011-BLG-090 (left panel) and OGLE-2011-BLG-0417 (right panel).
The small closed figures composed of concave curves represent the caustics. The
small open circles represent the lens positions. We note that the lens positions
and the resulting caustic vary in time due to the orbital motion of the lens. We
mark two sets of lens positions and caustics at two different times t1 and t2.
We also note that the source trajectory, the curve with an arrow, is curved due
to the combination of the parallax and orbital effects. The source trajectory is
presented so that the binary axis is set along the horizontal axis. The dashed
circles represent the Einstein rings corresponding to the total mass of the binary
lenses.
(A color version of this figure is available in the online journal.)

temperature, Teff , the surface turbulence velocity, vturb, and
the surface gravity, log g. For both events, we assume a solar
metallicity.

5. RESULTS

In Table 3, we present the solutions of parameters for the
tested models. The best-fit model light curves are drawn on the
top of the observed light curves in Figures 1 and 2. In Figure 3,
we present the geometry of the lens systems where the source
trajectory with respect to the caustic and the locations of the lens
components are marked. We note that the source trajectories
are curved due to the combination of the parallax and orbital
effects. We also note that the positions of the lens components
and the corresponding caustics change in time due to the orbital
motion and thus we present caustics at two different moments
that are marked in Figure 3. These moments correspond to those
of characteristic features on the light curve such as the peak

involved during a cusp approach or a caustic crossing. To better
show the differences in the fit between different models, we
present the residuals of data from the best fits of the individual
models. For a close-up view of the caustic-crossing parts of the
light curves, we also present enlargement of the light curve.

For both events, the parallax and orbital effects are detected
with significant statistical confidence levels. It is found that
inclusion of the second-order effects of the parallax and orbital
motions improves the fits with ∆χ2 = 571 and 2680 for MOA-
2011-BLG-090 and OGLE-2011-BLG-0417, respectively. To
be noted is that the orbital effect is considerable for OGLE-
2011-BLG-0417 and thus the difference between the values
of the lens parallax measured with (πE = 0.40) and without
(πE = 0.17) considering the orbital effect is substantial. Since
the lens parallax is directly related to the physical parameters
of the lens, this implies that considering the orbital motion of
the binary lens is important for the accurate measurement of the
lens parallax and thus the physical parameters.

The finite-source effect is also clearly detected and the
normalized source radii are precisely measured for both events.
To obtain the Einstein radius from the measured normalized
source radius, ρ⋆, additional information about the source star is
needed. We obtain this information by first locating the source
star on the color–magnitude diagram of stars in the field and
then calibrating the source brightness and color by using the
centroid of the giant clump as a reference under the assumption
that the source and clump giants experience the same amount
of extinction and reddening (Yoo et al. 2004). The measured
V/I colors are then translated into V/K color by using the
V/I −V/K relations of Bessell & Brett (1988) and the angular
source radius is obtained by using the V/K color and the angular
radius given by Kervella et al. (2004). In Figure 4, we present the
color–magnitude diagrams of field stars constructed based on
OGLE data and the locations of the source star. We find that the
source star is an F-type main-sequence star with a de-reddened
color of (V −I )0 = 0.68 for MOA-2011-BLG-090 and a K-type
giant with (V −I )0 = 0.98 for OGLE-2011-BLG-0417. Here we
assume that the de-reddened color and absolute magnitude of the
giant clump centroid are (V − I )0,c = 1.06 and MI,c = −0.23
(Stanek & Garnavich 1998), respectively. The mean distances
to clump stars of ∼7200 pc for MOA-2011-BLG-090 and
∼7900 pc for OGLE-2011-BLG-0417 are estimated based on
the Galactic model of Han & Gould (1995). The measured

7
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Figure 2. Light curve of OGLE-2011-BLG-0417. Notations are same as in Figure 1.
(A color version of this figure is available in the online journal.)

for thorough investigation of possible degeneracy of solutions.
We choose of s⊥, q, and α as the grid parameters because they are
related to the light curve features in a complex way such that a
small change in the values of the parameters can lead to dramatic
changes in the resulting light curve. On the other hand, the other
parameters are more directly related to the light curve features
and thus they are searched for by using a downhill approach.
For the χ2 minimization in the downhill approach, we use the
Markov Chain Monte Carlo (MCMC) method. Once a solution
of the parameters is found, we estimate the uncertainties of the
individual parameters based on the chain of solutions obtained
from MCMC runs.

To compute lensing magnifications affected by the finite-
source effect, we use the ray-shooting method (Schneider &
Weiss 1986; Kayser et al. 1986; Wambsganss 1997). In this
method, rays are uniformly shot from the image plane, bent
according to the lens equation, and land on the source plane.
Then, a finite magnification is computed by comparing the
number densities of rays on the image and source planes.
Precise computation of finite magnifications by using this
numerical technique requires a large number of rays and thus
demands heavy computation. To minimize computation, we
limit finite-magnification computation by using the ray-shooting
method only when the lens is very close to caustics. In the
adjacent region, we use an analytic hexadecapole approximation
(Pejcha & Heyrovský 2009; Gould 2008). In the region with
large enough distances from caustics, we use point-source
magnifications.
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Limb-darkening Coefficients
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ΓV 0.52 0.71
ΓR 0.45 0.61
ΓI 0.37 0.51
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Teff (K) 6650 4660
vturb (km s−1) 2 2
log g (cm s−2) 4.5 2.5

In the finite magnification computation, we consider the
variation of the magnification caused by the limb darkening
of the source star’s surface. We model the surface brightness
profile of a source star as

Sλ = Fλ

πθ⋆
2

[
1 − Γλ

(
1 − 3

2
cos ψ

)]
, (7)

where Γλ is the linear limb-darkening coefficients, Fλ is the
source star flux, and ψ is the angle between the normal to the
source star’s surface and the line of sight toward the star.
The limb-darkening coefficients are set based on the source type
that is determined on the basis of the color and magnitude of the
source. In Table 2, we present the limb-darkening coefficients
used, the corresponding source types, and the measured de-
reddened color along with the assumed values of the effective
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Figure 2. Light curve of OGLE-2011-BLG-0417. Notations are same as in Figure 1.
(A color version of this figure is available in the online journal.)
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curves (blue), they have substantially different maximum magnifications and times of max-
imum, whose differences yield a measurement of the “microlens parallax” vector πE. The
dashed portion of the Spitzer curve extends the model to what Spitzer could have observed if

it were not prevented from doing so by its Sun-angle constraints. Light curves are aligned to
the OGLE I-band scale (as is customary), even though Spitzer observations are at 3.6 µm.

Lower panel shows residuals.
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FIG. 1.ÈAbove : Standard microlensing geometry. The bold curve
shows the path of the light from the source (S) to the observer (O) being
deÑected by the lens (L) of mass M. The deÑection angle is a \ 4GM/rE c2,
where is the Einstein radius shown as a dashed line. The image (I) isrEdisplaced from the source by the angular Einstein radius which, pro-hE,
jected onto the source plane, corresponds to a physical distance Below :rü E.
Natural microlensing geometry. Mostly the same as the upper panel,
except that the Einstein radius is now projected onto the observer plane as

rather than onto the source plane as This minor di†erence allows oner8 E rü E.
to see immediately the relations between the observables and the(hE, r8 E)
physical parameters (M, First, under the small-angle approximation,nrel).so Second, by the exterior-anglea/r8 E \ hE/rE, r8 E hE \ arE \ 4GM/c2.
theorem, where and are the distances tohE \ a [ t \ r8 E/D

l
[ r8 E/D

s
, D

l
D

sthe lens and source. Hence, where is the lens-sourcehE/r8 E \ nrel/AU, nrelrelative parallax.

where and are the distances to the lens and source,D
l

D
sand Note that equation (3) can beDrel~1 4 D

l
~1 [ D

s
~1.

written more suggestively as

nE hE \ nrel , nE 4
AU
r8 E

, (4)

where is the lens-source relative parallax.nrel \ AU/Drel

Just as in astrometric parallax determinations, where n is
a more natural way to represent the measured quantity
than its inverse (distance), so in microlensing ““ parallax ÏÏ
determinations is more natural than its inverse ThenE (r8 E).
reason is the same : the observable e†ect is inversely pro-
portional to but directly proportional to so the mea-r8 E nE,
surement errors when expressed in terms of exhibit morenEregular behavior. As in the case of astrometric parallax, this
feature becomes especially important for measurements
that are consistent with zero at the few-p level. Indeed, in
contrast to astrometric parallaxes, microlensing parallaxes
are inherently two-dimensional (Gould 1995). That is, one
measures not only the amplitude of (or but also ther8 E nE)
direction of lens-source relative motion. Hence one can gen-
eralize to a two-dimensional vector whose direction isnE pEthat of the lens relative to the source. The measurement
errors in are then easily expressed as a covariancepEmatrix. By contrast, there is no natural way to generalize r8 E :
it can be made into a vector with the same direction butr8 E,
when is consistent with zero, such a vector is very poorlypEbehaved. Moreover, in some cases one component of canpEbe very well determined while the other is highly degenerate
(Refsdal 1966 ; Gould 1994b, 1995), a situation that is easily
represented using but unwieldy using (Note thatpE r8 E.
while no one has ever previously introduced the vector Ir8 E,
have often discussed the closely related projected velocity
vector, ¿8 \ r8 E/tE.)

The Einstein crossing time is the only observable thattEat present is routinely observed. While I Ðnd no fault with
considerations of symmetry with the substitutiontE,

lead me to substitute wherer8 E ] pE tE ] lE,

kE 4
1
tE

, (5)

and where the direction of is that of the lens motionlErelative to the source. With this deÐnition, the relative lens-
source proper motion is given by lrel \ lE hE.

3. RELATIONS BETWEEN OBSERVABLES AND PHYSICAL

QUANTITIES

From equations (2)È(4), one immediately derives

r8 E \S4GMDrel
c2 , nE \Snrel

iM
(6)

and

hE \S 4GM
Drel c2 \ JiMnrel , (7)

where

i 4
4G

c2AU
\ 4v2̂

M
_

c2 ^ 8.144
mas
M

_

, (8)

and km s~1 is the speed of the Earth.v
^

D 30
How well is the coefficient (8.14 . . . ) in i known? It

su†ers from two sources of uncertainty. First, the factor 4 in
equations (8) and (1) is a prediction of general relativity
(GR). Its accuracy (often parameterized by c) has been veri-
Ðed experimentally by Hipparcos, but only to 0.3%
(Froeschle, Mignard, & Arenou 1997). However, if GR is
assumed to be exact, then this coefficient can be determined
as accurately as which should be known from pulsar(v

^
/c)2,

Because	the	parallax	effect	depends	
on	the	OBSERVER,	the	criDcal	scale	is	
the	size	of	the	Einstein	ring	in	the	
OBSERVER	PLANE:	



D
L

and D
S

are shown in Figure 8. For typical values
M

L
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= 0.3
mas. The Einstein ring gets smaller as the mass decreases
and as the lens is moved closer to the source.

If the source is offset from the lens by some small
amount, it is lensed into two images that appear in line with
the source and the lens, and close to the Einstein ring as
in Figure 9. The “major” image appears just outside the
Einstein ring and is the larger of the two. The other image
appears just inside the Einstein ring and is referred to as the
“minor” image. The positions of the images are given by:

y± = ±1

2

(

p
u2

+ 4± u), (7)

where u is the projected separation between the source and
the lens as a fraction of the Einstein ring.

Because the size of the Einstein ring is so small, the two
images of the source are unresolved and the primary ob-
servable is their combined magnification

A =

u2

+ 2

u
p
u2

+ 4

. (8)

Note that when the source and lens are separated by one
Einstein radius, u = 1, this corresponds to a magnification
of only A = 1.34. In the limit that the source-lens sepa-
ration is very small, u ! 0, then Equation 8 simplifies to
A ! u�1. Since the source and the lens are both moving, u
(and so A) is a function of time. Another way to think about
this is to consider the magnification map. The magnification
of the source at any position in space can be calculated us-
ing Equation 8, giving a radially symmetric magnification
map. The source then traces a path across this map creat-
ing a microlensing event whose magnification changes as a
function of time (and position).

A microlensing event is defined by three basic observ-
ables:

• t
0

the time of the peak

• u
0

the impact parameter between the source and the
lens

• t
E

the Einstein crossing time, or the time it takes the
source to travel 1 Einstein radius, which is set by µ

rel

,
the relative proper motion between the source and the
lens: t

E

= ✓
E

/µ
rel

.

Given these observables, the magnification at any given
time t can be calculated using Equation 8, where

u =

q
u2

0

+ ⌧2 and ⌧ =

(t� t
0

)

2

t2
E

, (9)

see Figure 9. The dotted curves in Figures ??b and ??c (also
11b and 11c) show the magnification as a function of time
for u

0

= 0.005 and u
0

= 0.3, respectively.
Liebes (1964) and Refsdal (1964) were the first to con-

sider that it was actually possible to observe a microlens-
ing event. They fleshed out the theory of microlensing in

more detail and calculated the probabilities of observing a
microlensing event for various scenarios. However, it was
not until the late 1980s that the first microlensing searches
were undertaken, primarily as a means to find MACHOs2

(Alcock et al., 1992; Aubourg et al., 1993). These searches
were quickly expanded to include fields toward the galactic
bulge to search for planets and measure the mass function
of stars in the inner galaxy (Paczynski, 1991; Griest et al.,
1991).

Fig. 8.— Basic geometry of microlensing. Light from the
source, S, at a distance D

S

is bent by a lens, L, at a distance
D

L

. To the observer, O, the source appears as the image, I .
The angular size of the Einstein ring is ✓

E

. This may also
be expressed as a physical size in the lens plane, r

E

, or the
observer plane, r̃

E

.

6.1. Planetary Microlensing
6.1.1. Types of Planetary Perturbations

If planets are gravitationally bound to a lensing star, the
planet can be detected as a perturbation to the microlens-
ing light curve of the host star. The fundamental observ-
able properties of the planet are the mass ratio between the
planet and the lens star, q, and the projected separation be-
tween the planet and the lens star as a fraction of the Ein-
stein ring, s. The presence of the planet distorts the mag-
nification map and causes two caustics to appear as shown
by the red curves in Figures 10a and 11a. The definition of
a caustic is that is a closed curve for which a perfect point
source sitting anywhere along that curve will be infinitely
magnified. In order to detect the planet, the source trajec-
tory must pass over or near a caustic caused by the planet.

2Massive Compact Halo Objects, a dark matter candidate
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planet can be detected as a perturbation to the microlens-
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Note that when the source and lens are separated by one
Einstein radius, u = 1, this corresponds to a magnification
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FIG. 1.ÈAbove : Standard microlensing geometry. The bold curve
shows the path of the light from the source (S) to the observer (O) being
deÑected by the lens (L) of mass M. The deÑection angle is a \ 4GM/rE c2,
where is the Einstein radius shown as a dashed line. The image (I) isrEdisplaced from the source by the angular Einstein radius which, pro-hE,
jected onto the source plane, corresponds to a physical distance Below :rü E.
Natural microlensing geometry. Mostly the same as the upper panel,
except that the Einstein radius is now projected onto the observer plane as

rather than onto the source plane as This minor di†erence allows oner8 E rü E.
to see immediately the relations between the observables and the(hE, r8 E)
physical parameters (M, First, under the small-angle approximation,nrel).so Second, by the exterior-anglea/r8 E \ hE/rE, r8 E hE \ arE \ 4GM/c2.
theorem, where and are the distances tohE \ a [ t \ r8 E/D

l
[ r8 E/D

s
, D
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D

sthe lens and source. Hence, where is the lens-sourcehE/r8 E \ nrel/AU, nrelrelative parallax.

where and are the distances to the lens and source,D
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sand Note that equation (3) can beDrel~1 4 D
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written more suggestively as

nE hE \ nrel , nE 4
AU
r8 E

, (4)

where is the lens-source relative parallax.nrel \ AU/Drel

Just as in astrometric parallax determinations, where n is
a more natural way to represent the measured quantity
than its inverse (distance), so in microlensing ““ parallax ÏÏ
determinations is more natural than its inverse ThenE (r8 E).
reason is the same : the observable e†ect is inversely pro-
portional to but directly proportional to so the mea-r8 E nE,
surement errors when expressed in terms of exhibit morenEregular behavior. As in the case of astrometric parallax, this
feature becomes especially important for measurements
that are consistent with zero at the few-p level. Indeed, in
contrast to astrometric parallaxes, microlensing parallaxes
are inherently two-dimensional (Gould 1995). That is, one
measures not only the amplitude of (or but also ther8 E nE)
direction of lens-source relative motion. Hence one can gen-
eralize to a two-dimensional vector whose direction isnE pEthat of the lens relative to the source. The measurement
errors in are then easily expressed as a covariancepEmatrix. By contrast, there is no natural way to generalize r8 E :
it can be made into a vector with the same direction butr8 E,
when is consistent with zero, such a vector is very poorlypEbehaved. Moreover, in some cases one component of canpEbe very well determined while the other is highly degenerate
(Refsdal 1966 ; Gould 1994b, 1995), a situation that is easily
represented using but unwieldy using (Note thatpE r8 E.
while no one has ever previously introduced the vector Ir8 E,
have often discussed the closely related projected velocity
vector, ¿8 \ r8 E/tE.)

The Einstein crossing time is the only observable thattEat present is routinely observed. While I Ðnd no fault with
considerations of symmetry with the substitutiontE,

lead me to substitute wherer8 E ] pE tE ] lE,

kE 4
1
tE

, (5)

and where the direction of is that of the lens motionlErelative to the source. With this deÐnition, the relative lens-
source proper motion is given by lrel \ lE hE.

3. RELATIONS BETWEEN OBSERVABLES AND PHYSICAL

QUANTITIES

From equations (2)È(4), one immediately derives

r8 E \S4GMDrel
c2 , nE \Snrel

iM
(6)

and

hE \S 4GM
Drel c2 \ JiMnrel , (7)

where
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, (8)

and km s~1 is the speed of the Earth.v
^

D 30
How well is the coefficient (8.14 . . . ) in i known? It

su†ers from two sources of uncertainty. First, the factor 4 in
equations (8) and (1) is a prediction of general relativity
(GR). Its accuracy (often parameterized by c) has been veri-
Ðed experimentally by Hipparcos, but only to 0.3%
(Froeschle, Mignard, & Arenou 1997). However, if GR is
assumed to be exact, then this coefficient can be determined
as accurately as which should be known from pulsar(v

^
/c)2,
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assumed to be exact, then this coefficient can be determined
as accurately as which should be known from pulsar(v

^
/c)2,



@4	kpc	
@1	kpc	

@7.9	kpc	

~10	AU	

Lens	=	

786 GOULD Vol. 542

FIG. 1.ÈAbove : Standard microlensing geometry. The bold curve
shows the path of the light from the source (S) to the observer (O) being
deÑected by the lens (L) of mass M. The deÑection angle is a \ 4GM/rE c2,
where is the Einstein radius shown as a dashed line. The image (I) isrEdisplaced from the source by the angular Einstein radius which, pro-hE,
jected onto the source plane, corresponds to a physical distance Below :rü E.
Natural microlensing geometry. Mostly the same as the upper panel,
except that the Einstein radius is now projected onto the observer plane as

rather than onto the source plane as This minor di†erence allows oner8 E rü E.
to see immediately the relations between the observables and the(hE, r8 E)
physical parameters (M, First, under the small-angle approximation,nrel).so Second, by the exterior-anglea/r8 E \ hE/rE, r8 E hE \ arE \ 4GM/c2.
theorem, where and are the distances tohE \ a [ t \ r8 E/D

l
[ r8 E/D

s
, D

l
D

sthe lens and source. Hence, where is the lens-sourcehE/r8 E \ nrel/AU, nrelrelative parallax.

where and are the distances to the lens and source,D
l

D
sand Note that equation (3) can beDrel~1 4 D

l
~1 [ D

s
~1.

written more suggestively as

nE hE \ nrel , nE 4
AU
r8 E

, (4)

where is the lens-source relative parallax.nrel \ AU/Drel

Just as in astrometric parallax determinations, where n is
a more natural way to represent the measured quantity
than its inverse (distance), so in microlensing ““ parallax ÏÏ
determinations is more natural than its inverse ThenE (r8 E).
reason is the same : the observable e†ect is inversely pro-
portional to but directly proportional to so the mea-r8 E nE,
surement errors when expressed in terms of exhibit morenEregular behavior. As in the case of astrometric parallax, this
feature becomes especially important for measurements
that are consistent with zero at the few-p level. Indeed, in
contrast to astrometric parallaxes, microlensing parallaxes
are inherently two-dimensional (Gould 1995). That is, one
measures not only the amplitude of (or but also ther8 E nE)
direction of lens-source relative motion. Hence one can gen-
eralize to a two-dimensional vector whose direction isnE pEthat of the lens relative to the source. The measurement
errors in are then easily expressed as a covariancepEmatrix. By contrast, there is no natural way to generalize r8 E :
it can be made into a vector with the same direction butr8 E,
when is consistent with zero, such a vector is very poorlypEbehaved. Moreover, in some cases one component of canpEbe very well determined while the other is highly degenerate
(Refsdal 1966 ; Gould 1994b, 1995), a situation that is easily
represented using but unwieldy using (Note thatpE r8 E.
while no one has ever previously introduced the vector Ir8 E,
have often discussed the closely related projected velocity
vector, ¿8 \ r8 E/tE.)

The Einstein crossing time is the only observable thattEat present is routinely observed. While I Ðnd no fault with
considerations of symmetry with the substitutiontE,

lead me to substitute wherer8 E ] pE tE ] lE,

kE 4
1
tE

, (5)

and where the direction of is that of the lens motionlErelative to the source. With this deÐnition, the relative lens-
source proper motion is given by lrel \ lE hE.

3. RELATIONS BETWEEN OBSERVABLES AND PHYSICAL

QUANTITIES

From equations (2)È(4), one immediately derives

r8 E \S4GMDrel
c2 , nE \Snrel

iM
(6)

and

hE \S 4GM
Drel c2 \ JiMnrel , (7)

where

i 4
4G

c2AU
\ 4v2̂

M
_

c2 ^ 8.144
mas
M

_

, (8)

and km s~1 is the speed of the Earth.v
^

D 30
How well is the coefficient (8.14 . . . ) in i known? It

su†ers from two sources of uncertainty. First, the factor 4 in
equations (8) and (1) is a prediction of general relativity
(GR). Its accuracy (often parameterized by c) has been veri-
Ðed experimentally by Hipparcos, but only to 0.3%
(Froeschle, Mignard, & Arenou 1997). However, if GR is
assumed to be exact, then this coefficient can be determined
as accurately as which should be known from pulsar(v

^
/c)2,



– 26 –

Fig. 2.— Lightcurve and residuals for planetary model of OGLE-2014-BLG-0124 as observed
from Earth by OGLE in I band (black) and by Spitzer at 3.6µm (red), which was located

∼ 1AU East of Earth in projection at the time of the observations. Simple inspection of
the OGLE lightcurve features shows that this is Jovian planet, while the fact that Spitzer
observed similar features 20 days earlier demonstrates that the lens is moving ṽ ∼ 105 km s−1

due East projected on the plane of the sky (Section 3). Detailed model-fitting confirms and
refines this by-eye analysis (Section 5). Note that in the left inset, the Spitzer light curve is

aligned to the OGLE system (as is customary), but it is displaced by 0.2 mag in the main
diagram, for clarity.
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Fig. 3.— Magnification map for caustic region of OGLE-2014-BLG-0124 in standard ori-

entation with planet to right. As the source passes over the “demagnified” region (darker
tones), the minor image due (to the primary lens) passes very close to the planet, which is
off the figure to the right. Because the minor image is unstable, it is easily destroyed by the

planet, which accounts for the relative demagnification. Two triangular caustic regions flank
the deepest part of this demagnification. The source does not cross these causitics, but does

cross the two ridges that extend from the cusps, toward the left. It is these ridges that are
responsible for the two bumps near t = 6820 and t = 6825 (from Spitzer) or t = 6839 and

t = 6845 (from Earth) in Figure 2.
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Yutong	Shan’s	Poster:		
binary	w/Spitzer	parallax	



Satellite	parallax	programs	have	2	
goals	

1.  Measure	the	masses	of	planets	(and	other	
interesDng	objects)	

2.  Measure	the	distribuDon	of	planets	
throughout	the	galaxy.	



Satellite	parallax	is	easier	to	measure	
than	annual	parallax	because	the	
scales	are	beKer	matched.	

Observa;onal	
Scale	

Relevant	
Einstein	Scale	

Satellite	
Parallax	 1	AU	 10	AU	

Annual	
Parallax	 365	days	 30	days	
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2.1. Angular Einstein Radius, θE, from Finite-Source Effects

First, during an EME peak, the lens is very likely to transit
the source, giving rise to distinctive “finite-source” effects that
yield ρ = θ∗/θE, the ratio of the source radius to the Einstein
radius. At high magnification, A = 1/u, where u is the source-
lens separation in units of θE. Since typically θE ∼ 0.5 mas
and θ∗ ∼ 0.5 µas, such effects are expected for Amax ! 1000.
In the present case, we find that the lens transited the source
with an impact parameter of ∼ θ∗/3, which permits a very
accurate determination of ρ = 8.50±0.16×10−4. We evaluate
the source radius θ∗ by extending the method of (Yoo et al.
2004), to three bands, V IH (D. P. Bennett et al. 2009, in
preparation). We obtain calibrated V I data from OGLE-II,
and calibrated H data by aligning SMARTS H band to the
Two Micron All Sky Survey (Skrutskie et al. 2006). We
measure the position of the clump and the source in three
bands (V, I,H )cl = (17.32, 15.28, 13.33) ± (0.1, 0.1, 0.1),
(V, I,H )s = (20.58, 18.91, 17.50) ± (0.02, 0.02, 0.02), We
adopt (MV ,MI ,MH ) = (0.79,−0.25,−1.41) ± (0.08, 0.05,
0.04) based on Alves et al. (2002) adjusted for the α-enhanced
environment of the bulge (Salaris & Girardi 2002). We perform
a Monte Carlo Markov Chain (MCMC) optimization of a model
with four parameters: (1) a Cardelli et al. (1989) extinction law
characterized by RV , (2) the mean visual extinction toward the
clump AV,cl, (3) the mean distance to the clump, R′

0, and (4) the
extinction difference between the source and the clump δAV .
We assume (based on experience with high-resolution spectra
of bulge dwarfs) that δAV = 0 ± 0.1, and we demand that the
resulting (V − I )0,s be consistent with that predicted by Bessell
& Brett (1988) from (V − H )0,s, with an error of 0.03 mag.
We then use the Kervella et al. (2004) (V − H ) color/surface-
brightness relation to derive θ∗ = 0.77 ± 0.03 µas, where the
error also accounts for uncertainty in the model of the source flux
(which affects all three bands in tandem). As a check, we note
that this procedure yields RV I ≡ AV /E(V − I ) = 2.01 ± 0.10,
a typical value for the bulge, and R′

0 = 7.8 ± 0.5 kpc, which
is also consistent with most estimates (keeping in mind that
at ℓ = 2.◦37, the bar is about 200 pc closer than the Galactic
center).

This result implies θE = θ∗/ρ = 0.91±0.04 mas. Combining
this with the measured Einstein timescale, tE = 6.91±0.13 days,
yields a proper motion in the Earth frame (An et al. 2002; Gould
2004) of µgeo = θE/tE = 48 ± 2 mas yr−1.

2.2. Projected Einstein Radius from Terrestrial Parallax, πE

Second, and more dramatically, EMEs are subject to “ter-
restrial parallax” effects (Hardy & Walker 1995; Holz & Wald
1996). If a microlensing event is observed from two different lo-
cations, the source-lens relative trajectory will appear different:
there will be a different impact parameter, u0, and a different
time of closest approach, t0. Since the projected Einstein ra-
dius r̃E = AU/πE is typically of order AU, the second observer
should typically be in solar orbit to notice a significant effect,
and indeed one such space-based measurement has been made
(Dong et al. 2007). However, the main way that microlens par-
allax has been measured in the past is to take advantage of the
moving platform of the Earth, but usually the event must last
a large fraction of a year for this to work (Poindexter et al.
2005). For EMEs, the relevant spatial scale and timescales are
reduced by a factor Amax. For example, if the projected velocity
of the lens is 100 km s−1 in the westward direction, then t0 will
be about 80 s later in Chile than South Africa. Measuring the
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Figure 1. Light curve of OGLE-2007-BLG-224 during 1.4 hours closest to
peak. Observatories in South Africa (Bronberg: green), Canaries (RoboNet LT:
blue) and Chile (OGLE I: red, µFUN SMARTS I: magenta, µFUN SMARTS
H: black) see significantly (several percent) different magnifications due to their
different positions on the Earth. From these differences, one can infer that r̃E
(the projected Einstein radius) is about 10,000 Earth radii. The red and black
curves (and points) deviate slightly over the peak because of different limb
darkening of the source in I and H bands.

peak time of a normal microlensing event (which typically lasts
tE ∼ 30 days) to this precision is virtually impossible. But since
the peaking timescale of this event is roughly the source cross-
ing time, t∗ ≡ ρ tE = 8.5 minutes, such measurements become
quite practical. Indeed, the event passed both South Africa and
the Canaries about 1 minute earlier than Chile, with both time
differences accurate to a few seconds (See Figure 1). In practice,
we simultaneously account for the difference in impact param-
eters and peak times at all locations (An et al. 2002), as well
as the Earth’s orbital motion (which turns out be negligible), to
measure both the microlens parallax πE = 1.97 ± 0.13 and the
direction of lens-source relative motion, 52 ± 5◦ south of west
(see Figure 2). The parallax measurement can also be expressed
in terms of the offsets, ∆t ≡ (∆t0, tE∆u0), from which it is
ultimately derived:

∆t12 = (−18.1, 54.0)s ± (5.8, 2.5)s
∆t23 = (−43.1,−52.0)s ± (2.6, 7.0)s
∆t31 = (61.2,−2.0)s ± (4.3, 5.2)s, (2)

where 1 = South Africa, 2 = Canaries, 3 = Chile.

2.3. Mass, Distance, and Transverse Velocity

The determination of πE and θE yield the mass and relative
parallax

M = θE

κπE
= 0.056 ± 0.004 M⊙

πrel = θEπE = 1.78 ± 0.13 mas (3)

Assuming (as is consistent with its color and flux) that the
source is in the Galactic bulge (πs = 125 µas), the lens parallax

Gould	et	al	2009,	ApJL,	698,	147	

L150 GOULD ET AL. Vol. 698

Figure 2. Reconstruction of microlens flyby. Upper figure: arrow defines locus
of points from which lens and source appear perfectly aligned, passing just
1 Earth diameter from the Earth’s surface. Lower figure: Earth as seen from
OGLE-2007-BLG-224 at the peak of the event. The red squares show the four
observatories (in Chile, South Africa, and the Canaries) that observed near
peak. The black diagonal lines show contours of constant peak time, with time
offsets indicated between Chile and the other two locations. The green curve
shows sunrise, while cyan, blue, and magenta curves show civil, nautical, and
astronomical twilight. As shown in Figure 1, South Africa observations stopped
10 minutes before peak due to developing daylight.

and distance are πl = πrel + πs = 1.90 mas, Dl = AU/πs =
525 ± 40 pc, respectively.

The projected velocity of the lens in the Earth frame is
ṽgeo = µgeo(AU/πrel) = 127 km s−1. To find the projected
velocity in the frame of the Sun, we must remove the motion
of the Earth around the Sun (23 km s−1, almost due east).
We then find ṽhel = 112 km s−1 at 61◦ south of west. This
means that the lens is moving against the direction of Galactic
rotation, just 1◦ out of the Galactic plane (toward Galactic south).
Taking account of the motion of the Sun relative to the local
standard of rest (Dehnen & Binney 1998) as well as the small
mean motion (and its uncertainty) of the source, we find that
the lens is moving at ṽhel = 113 ± 21 km s−1 relative to the
Galactic disk at its location, almost directly counter to Galactic
rotation. This motion is quite consistent with the kinematics
of the Galactic thick disk, which has an asymmetric drift of
43 km s−1 and a dispersion of 49 km s−1 in the direction of
Galactic rotation (Casertano et al. 1990). (It is also consistent
with Galactic halo stars, but with a probability more than 100
times smaller.) Moreover, since the inferred mass is below the
threshold for burning hydrogen, the lens is almost certainly a
brown dwarf. While nearby brown dwarfs of this mass have been
detected (e.g., Burgasser et al. 2006; Faherty et al. 2009), these
are mostly quite young and so still retain the heat generated

during their collapse from a cloud of gas. The thick disk is of
order 11 Gyr old, and hence brown dwarfs have had substantial
time to cool. Only those very near the hydrogen burning limit
are easy to see, and then only if they are relatively nearby.

3. DISCUSSION

Hubble Space Telescope (HST) data were taken in V, I, J,
and H bands ∆t1 = 29 days after peak when the source was
magnified by a factor A = 1.005, and again almost exactly one
year later, ∆t2 = 1.08 years. At the first epoch, the source
and lens were virtually coincident, being separated by only
µgeo∆t1 ∼ 4 mas, i.e., <0.1 pixels, while at the second epoch
they were separated by µhel∆t2 ∼ 47 mas ∼ 1 pixel, where
µhel = 43 mas yr−1 is the heliocentric proper motion. These
observations confirm that the excess flux (above the source flux
predicted from the microlensing fit) is consistent with zero, but
unfortunately not with very high precision because an unrelated
star lying 150 mas from the source degrades the measurements.
We discuss the prospect for future observations of the lens flux
below.

We now ask, given a standard Galactic model (Han & Gould
2003; Gould 2000a), how likely it is that detailed information
on a tE = 7 day (but otherwise unconstrained) microlensing
event toward this line of sight (l = 2.37, b = −3.71) would
turn out to imply a foreground (Dl < 4 kpc) thick-disk
star rather than a star in the Galactic bulge? The chance is
just 1/235. Hence, either we were extremely lucky to have
found this object, or brown dwarfs are more common in the
thick disk than our standard model for the mass function
would predict. Specifically, our model assumes a relatively
flat power-law mass function for low-mass stars and brown
dwarfs with dN/d log M ∝ M−0.3 from M = 0.7 M⊙ down
to M = 0.03 M⊙. This model is consistent with results from
observations of nearby thin disk brown dwarfs (Pinfield et al.
2006; Metchev et al. 2008), and thus our detection would imply
that brown dwarfs must be an order of magnitude more common
in the thick disk than in the thin disk, in order that the a priori
probability of detecting this event be !10%. This possibility
should be considered seriously, since the prevalence of old
brown dwarfs is essentially unconstrained by any data, owing
to their faintness.

In this light, we note that two other sets of investigators
have concluded that they must have been “lucky” unless old-
population brown-dwarfs are more common than generally
assumed. First, Burgasser et al. (2003) discovered a halo brown
dwarf, probably within 20 pc of the Sun, a volume that contains
only about seven halo stars over the entire mass range from
the hydrogen-burning limit to a solar mass (Gould 2003). Yet
the survey in which this object was discovered would only
be sensitive to halo brown dwarfs in an extremely narrow
mass range just below this limit (Burgasser 2004). Second,
Gaudi et al. (2008b) analyzed a microlensing event of a nearby
(1 kpc), bright (V = 11) source serendipitously discovered by
an amateur astronomer hunting for comets, finding that it was
most likely a low-mass star or brown dwarf moving at roughly
100 km s−1. Based on the low rate of such events (and the
non-systematic character of the search), they concluded that
they were “probably lucky ... but perhaps not unreasonably so”
to have found this event (see also Fukui et al. 2007). Finally,
Faherty et al. (2009) found 14 high-velocity objects in a sample
of 332 M, L, and T dwarfs, which are consistent with thick-
disk or halo kinematics. Only one of these has J − K < 0,
which would be indicative of an old, low-mass brown dwarf
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with four parameters: (1) a Cardelli et al. (1989) extinction law
characterized by RV , (2) the mean visual extinction toward the
clump AV,cl, (3) the mean distance to the clump, R′

0, and (4) the
extinction difference between the source and the clump δAV .
We assume (based on experience with high-resolution spectra
of bulge dwarfs) that δAV = 0 ± 0.1, and we demand that the
resulting (V − I )0,s be consistent with that predicted by Bessell
& Brett (1988) from (V − H )0,s, with an error of 0.03 mag.
We then use the Kervella et al. (2004) (V − H ) color/surface-
brightness relation to derive θ∗ = 0.77 ± 0.03 µas, where the
error also accounts for uncertainty in the model of the source flux
(which affects all three bands in tandem). As a check, we note
that this procedure yields RV I ≡ AV /E(V − I ) = 2.01 ± 0.10,
a typical value for the bulge, and R′

0 = 7.8 ± 0.5 kpc, which
is also consistent with most estimates (keeping in mind that
at ℓ = 2.◦37, the bar is about 200 pc closer than the Galactic
center).

This result implies θE = θ∗/ρ = 0.91±0.04 mas. Combining
this with the measured Einstein timescale, tE = 6.91±0.13 days,
yields a proper motion in the Earth frame (An et al. 2002; Gould
2004) of µgeo = θE/tE = 48 ± 2 mas yr−1.

2.2. Projected Einstein Radius from Terrestrial Parallax, πE

Second, and more dramatically, EMEs are subject to “ter-
restrial parallax” effects (Hardy & Walker 1995; Holz & Wald
1996). If a microlensing event is observed from two different lo-
cations, the source-lens relative trajectory will appear different:
there will be a different impact parameter, u0, and a different
time of closest approach, t0. Since the projected Einstein ra-
dius r̃E = AU/πE is typically of order AU, the second observer
should typically be in solar orbit to notice a significant effect,
and indeed one such space-based measurement has been made
(Dong et al. 2007). However, the main way that microlens par-
allax has been measured in the past is to take advantage of the
moving platform of the Earth, but usually the event must last
a large fraction of a year for this to work (Poindexter et al.
2005). For EMEs, the relevant spatial scale and timescales are
reduced by a factor Amax. For example, if the projected velocity
of the lens is 100 km s−1 in the westward direction, then t0 will
be about 80 s later in Chile than South Africa. Measuring the
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Figure 1. Light curve of OGLE-2007-BLG-224 during 1.4 hours closest to
peak. Observatories in South Africa (Bronberg: green), Canaries (RoboNet LT:
blue) and Chile (OGLE I: red, µFUN SMARTS I: magenta, µFUN SMARTS
H: black) see significantly (several percent) different magnifications due to their
different positions on the Earth. From these differences, one can infer that r̃E
(the projected Einstein radius) is about 10,000 Earth radii. The red and black
curves (and points) deviate slightly over the peak because of different limb
darkening of the source in I and H bands.

peak time of a normal microlensing event (which typically lasts
tE ∼ 30 days) to this precision is virtually impossible. But since
the peaking timescale of this event is roughly the source cross-
ing time, t∗ ≡ ρ tE = 8.5 minutes, such measurements become
quite practical. Indeed, the event passed both South Africa and
the Canaries about 1 minute earlier than Chile, with both time
differences accurate to a few seconds (See Figure 1). In practice,
we simultaneously account for the difference in impact param-
eters and peak times at all locations (An et al. 2002), as well
as the Earth’s orbital motion (which turns out be negligible), to
measure both the microlens parallax πE = 1.97 ± 0.13 and the
direction of lens-source relative motion, 52 ± 5◦ south of west
(see Figure 2). The parallax measurement can also be expressed
in terms of the offsets, ∆t ≡ (∆t0, tE∆u0), from which it is
ultimately derived:

∆t12 = (−18.1, 54.0)s ± (5.8, 2.5)s
∆t23 = (−43.1,−52.0)s ± (2.6, 7.0)s
∆t31 = (61.2,−2.0)s ± (4.3, 5.2)s, (2)

where 1 = South Africa, 2 = Canaries, 3 = Chile.

2.3. Mass, Distance, and Transverse Velocity

The determination of πE and θE yield the mass and relative
parallax

M = θE

κπE
= 0.056 ± 0.004 M⊙

πrel = θEπE = 1.78 ± 0.13 mas (3)

Assuming (as is consistent with its color and flux) that the
source is in the Galactic bulge (πs = 125 µas), the lens parallax
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Figure 2. Reconstruction of microlens flyby. Upper figure: arrow defines locus
of points from which lens and source appear perfectly aligned, passing just
1 Earth diameter from the Earth’s surface. Lower figure: Earth as seen from
OGLE-2007-BLG-224 at the peak of the event. The red squares show the four
observatories (in Chile, South Africa, and the Canaries) that observed near
peak. The black diagonal lines show contours of constant peak time, with time
offsets indicated between Chile and the other two locations. The green curve
shows sunrise, while cyan, blue, and magenta curves show civil, nautical, and
astronomical twilight. As shown in Figure 1, South Africa observations stopped
10 minutes before peak due to developing daylight.

and distance are πl = πrel + πs = 1.90 mas, Dl = AU/πs =
525 ± 40 pc, respectively.

The projected velocity of the lens in the Earth frame is
ṽgeo = µgeo(AU/πrel) = 127 km s−1. To find the projected
velocity in the frame of the Sun, we must remove the motion
of the Earth around the Sun (23 km s−1, almost due east).
We then find ṽhel = 112 km s−1 at 61◦ south of west. This
means that the lens is moving against the direction of Galactic
rotation, just 1◦ out of the Galactic plane (toward Galactic south).
Taking account of the motion of the Sun relative to the local
standard of rest (Dehnen & Binney 1998) as well as the small
mean motion (and its uncertainty) of the source, we find that
the lens is moving at ṽhel = 113 ± 21 km s−1 relative to the
Galactic disk at its location, almost directly counter to Galactic
rotation. This motion is quite consistent with the kinematics
of the Galactic thick disk, which has an asymmetric drift of
43 km s−1 and a dispersion of 49 km s−1 in the direction of
Galactic rotation (Casertano et al. 1990). (It is also consistent
with Galactic halo stars, but with a probability more than 100
times smaller.) Moreover, since the inferred mass is below the
threshold for burning hydrogen, the lens is almost certainly a
brown dwarf. While nearby brown dwarfs of this mass have been
detected (e.g., Burgasser et al. 2006; Faherty et al. 2009), these
are mostly quite young and so still retain the heat generated

during their collapse from a cloud of gas. The thick disk is of
order 11 Gyr old, and hence brown dwarfs have had substantial
time to cool. Only those very near the hydrogen burning limit
are easy to see, and then only if they are relatively nearby.

3. DISCUSSION

Hubble Space Telescope (HST) data were taken in V, I, J,
and H bands ∆t1 = 29 days after peak when the source was
magnified by a factor A = 1.005, and again almost exactly one
year later, ∆t2 = 1.08 years. At the first epoch, the source
and lens were virtually coincident, being separated by only
µgeo∆t1 ∼ 4 mas, i.e., <0.1 pixels, while at the second epoch
they were separated by µhel∆t2 ∼ 47 mas ∼ 1 pixel, where
µhel = 43 mas yr−1 is the heliocentric proper motion. These
observations confirm that the excess flux (above the source flux
predicted from the microlensing fit) is consistent with zero, but
unfortunately not with very high precision because an unrelated
star lying 150 mas from the source degrades the measurements.
We discuss the prospect for future observations of the lens flux
below.

We now ask, given a standard Galactic model (Han & Gould
2003; Gould 2000a), how likely it is that detailed information
on a tE = 7 day (but otherwise unconstrained) microlensing
event toward this line of sight (l = 2.37, b = −3.71) would
turn out to imply a foreground (Dl < 4 kpc) thick-disk
star rather than a star in the Galactic bulge? The chance is
just 1/235. Hence, either we were extremely lucky to have
found this object, or brown dwarfs are more common in the
thick disk than our standard model for the mass function
would predict. Specifically, our model assumes a relatively
flat power-law mass function for low-mass stars and brown
dwarfs with dN/d log M ∝ M−0.3 from M = 0.7 M⊙ down
to M = 0.03 M⊙. This model is consistent with results from
observations of nearby thin disk brown dwarfs (Pinfield et al.
2006; Metchev et al. 2008), and thus our detection would imply
that brown dwarfs must be an order of magnitude more common
in the thick disk than in the thin disk, in order that the a priori
probability of detecting this event be !10%. This possibility
should be considered seriously, since the prevalence of old
brown dwarfs is essentially unconstrained by any data, owing
to their faintness.

In this light, we note that two other sets of investigators
have concluded that they must have been “lucky” unless old-
population brown-dwarfs are more common than generally
assumed. First, Burgasser et al. (2003) discovered a halo brown
dwarf, probably within 20 pc of the Sun, a volume that contains
only about seven halo stars over the entire mass range from
the hydrogen-burning limit to a solar mass (Gould 2003). Yet
the survey in which this object was discovered would only
be sensitive to halo brown dwarfs in an extremely narrow
mass range just below this limit (Burgasser 2004). Second,
Gaudi et al. (2008b) analyzed a microlensing event of a nearby
(1 kpc), bright (V = 11) source serendipitously discovered by
an amateur astronomer hunting for comets, finding that it was
most likely a low-mass star or brown dwarf moving at roughly
100 km s−1. Based on the low rate of such events (and the
non-systematic character of the search), they concluded that
they were “probably lucky ... but perhaps not unreasonably so”
to have found this event (see also Fukui et al. 2007). Finally,
Faherty et al. (2009) found 14 high-velocity objects in a sample
of 332 M, L, and T dwarfs, which are consistent with thick-
disk or halo kinematics. Only one of these has J − K < 0,
which would be indicative of an old, low-mass brown dwarf
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2.1. Angular Einstein Radius, θE, from Finite-Source Effects

First, during an EME peak, the lens is very likely to transit
the source, giving rise to distinctive “finite-source” effects that
yield ρ = θ∗/θE, the ratio of the source radius to the Einstein
radius. At high magnification, A = 1/u, where u is the source-
lens separation in units of θE. Since typically θE ∼ 0.5 mas
and θ∗ ∼ 0.5 µas, such effects are expected for Amax ! 1000.
In the present case, we find that the lens transited the source
with an impact parameter of ∼ θ∗/3, which permits a very
accurate determination of ρ = 8.50±0.16×10−4. We evaluate
the source radius θ∗ by extending the method of (Yoo et al.
2004), to three bands, V IH (D. P. Bennett et al. 2009, in
preparation). We obtain calibrated V I data from OGLE-II,
and calibrated H data by aligning SMARTS H band to the
Two Micron All Sky Survey (Skrutskie et al. 2006). We
measure the position of the clump and the source in three
bands (V, I,H )cl = (17.32, 15.28, 13.33) ± (0.1, 0.1, 0.1),
(V, I,H )s = (20.58, 18.91, 17.50) ± (0.02, 0.02, 0.02), We
adopt (MV ,MI ,MH ) = (0.79,−0.25,−1.41) ± (0.08, 0.05,
0.04) based on Alves et al. (2002) adjusted for the α-enhanced
environment of the bulge (Salaris & Girardi 2002). We perform
a Monte Carlo Markov Chain (MCMC) optimization of a model
with four parameters: (1) a Cardelli et al. (1989) extinction law
characterized by RV , (2) the mean visual extinction toward the
clump AV,cl, (3) the mean distance to the clump, R′

0, and (4) the
extinction difference between the source and the clump δAV .
We assume (based on experience with high-resolution spectra
of bulge dwarfs) that δAV = 0 ± 0.1, and we demand that the
resulting (V − I )0,s be consistent with that predicted by Bessell
& Brett (1988) from (V − H )0,s, with an error of 0.03 mag.
We then use the Kervella et al. (2004) (V − H ) color/surface-
brightness relation to derive θ∗ = 0.77 ± 0.03 µas, where the
error also accounts for uncertainty in the model of the source flux
(which affects all three bands in tandem). As a check, we note
that this procedure yields RV I ≡ AV /E(V − I ) = 2.01 ± 0.10,
a typical value for the bulge, and R′

0 = 7.8 ± 0.5 kpc, which
is also consistent with most estimates (keeping in mind that
at ℓ = 2.◦37, the bar is about 200 pc closer than the Galactic
center).

This result implies θE = θ∗/ρ = 0.91±0.04 mas. Combining
this with the measured Einstein timescale, tE = 6.91±0.13 days,
yields a proper motion in the Earth frame (An et al. 2002; Gould
2004) of µgeo = θE/tE = 48 ± 2 mas yr−1.

2.2. Projected Einstein Radius from Terrestrial Parallax, πE

Second, and more dramatically, EMEs are subject to “ter-
restrial parallax” effects (Hardy & Walker 1995; Holz & Wald
1996). If a microlensing event is observed from two different lo-
cations, the source-lens relative trajectory will appear different:
there will be a different impact parameter, u0, and a different
time of closest approach, t0. Since the projected Einstein ra-
dius r̃E = AU/πE is typically of order AU, the second observer
should typically be in solar orbit to notice a significant effect,
and indeed one such space-based measurement has been made
(Dong et al. 2007). However, the main way that microlens par-
allax has been measured in the past is to take advantage of the
moving platform of the Earth, but usually the event must last
a large fraction of a year for this to work (Poindexter et al.
2005). For EMEs, the relevant spatial scale and timescales are
reduced by a factor Amax. For example, if the projected velocity
of the lens is 100 km s−1 in the westward direction, then t0 will
be about 80 s later in Chile than South Africa. Measuring the
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Figure 1. Light curve of OGLE-2007-BLG-224 during 1.4 hours closest to
peak. Observatories in South Africa (Bronberg: green), Canaries (RoboNet LT:
blue) and Chile (OGLE I: red, µFUN SMARTS I: magenta, µFUN SMARTS
H: black) see significantly (several percent) different magnifications due to their
different positions on the Earth. From these differences, one can infer that r̃E
(the projected Einstein radius) is about 10,000 Earth radii. The red and black
curves (and points) deviate slightly over the peak because of different limb
darkening of the source in I and H bands.

peak time of a normal microlensing event (which typically lasts
tE ∼ 30 days) to this precision is virtually impossible. But since
the peaking timescale of this event is roughly the source cross-
ing time, t∗ ≡ ρ tE = 8.5 minutes, such measurements become
quite practical. Indeed, the event passed both South Africa and
the Canaries about 1 minute earlier than Chile, with both time
differences accurate to a few seconds (See Figure 1). In practice,
we simultaneously account for the difference in impact param-
eters and peak times at all locations (An et al. 2002), as well
as the Earth’s orbital motion (which turns out be negligible), to
measure both the microlens parallax πE = 1.97 ± 0.13 and the
direction of lens-source relative motion, 52 ± 5◦ south of west
(see Figure 2). The parallax measurement can also be expressed
in terms of the offsets, ∆t ≡ (∆t0, tE∆u0), from which it is
ultimately derived:

∆t12 = (−18.1, 54.0)s ± (5.8, 2.5)s
∆t23 = (−43.1,−52.0)s ± (2.6, 7.0)s
∆t31 = (61.2,−2.0)s ± (4.3, 5.2)s, (2)

where 1 = South Africa, 2 = Canaries, 3 = Chile.

2.3. Mass, Distance, and Transverse Velocity

The determination of πE and θE yield the mass and relative
parallax

M = θE

κπE
= 0.056 ± 0.004 M⊙

πrel = θEπE = 1.78 ± 0.13 mas (3)

Assuming (as is consistent with its color and flux) that the
source is in the Galactic bulge (πs = 125 µas), the lens parallax
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Figure 2. Reconstruction of microlens flyby. Upper figure: arrow defines locus
of points from which lens and source appear perfectly aligned, passing just
1 Earth diameter from the Earth’s surface. Lower figure: Earth as seen from
OGLE-2007-BLG-224 at the peak of the event. The red squares show the four
observatories (in Chile, South Africa, and the Canaries) that observed near
peak. The black diagonal lines show contours of constant peak time, with time
offsets indicated between Chile and the other two locations. The green curve
shows sunrise, while cyan, blue, and magenta curves show civil, nautical, and
astronomical twilight. As shown in Figure 1, South Africa observations stopped
10 minutes before peak due to developing daylight.

and distance are πl = πrel + πs = 1.90 mas, Dl = AU/πs =
525 ± 40 pc, respectively.

The projected velocity of the lens in the Earth frame is
ṽgeo = µgeo(AU/πrel) = 127 km s−1. To find the projected
velocity in the frame of the Sun, we must remove the motion
of the Earth around the Sun (23 km s−1, almost due east).
We then find ṽhel = 112 km s−1 at 61◦ south of west. This
means that the lens is moving against the direction of Galactic
rotation, just 1◦ out of the Galactic plane (toward Galactic south).
Taking account of the motion of the Sun relative to the local
standard of rest (Dehnen & Binney 1998) as well as the small
mean motion (and its uncertainty) of the source, we find that
the lens is moving at ṽhel = 113 ± 21 km s−1 relative to the
Galactic disk at its location, almost directly counter to Galactic
rotation. This motion is quite consistent with the kinematics
of the Galactic thick disk, which has an asymmetric drift of
43 km s−1 and a dispersion of 49 km s−1 in the direction of
Galactic rotation (Casertano et al. 1990). (It is also consistent
with Galactic halo stars, but with a probability more than 100
times smaller.) Moreover, since the inferred mass is below the
threshold for burning hydrogen, the lens is almost certainly a
brown dwarf. While nearby brown dwarfs of this mass have been
detected (e.g., Burgasser et al. 2006; Faherty et al. 2009), these
are mostly quite young and so still retain the heat generated

during their collapse from a cloud of gas. The thick disk is of
order 11 Gyr old, and hence brown dwarfs have had substantial
time to cool. Only those very near the hydrogen burning limit
are easy to see, and then only if they are relatively nearby.

3. DISCUSSION

Hubble Space Telescope (HST) data were taken in V, I, J,
and H bands ∆t1 = 29 days after peak when the source was
magnified by a factor A = 1.005, and again almost exactly one
year later, ∆t2 = 1.08 years. At the first epoch, the source
and lens were virtually coincident, being separated by only
µgeo∆t1 ∼ 4 mas, i.e., <0.1 pixels, while at the second epoch
they were separated by µhel∆t2 ∼ 47 mas ∼ 1 pixel, where
µhel = 43 mas yr−1 is the heliocentric proper motion. These
observations confirm that the excess flux (above the source flux
predicted from the microlensing fit) is consistent with zero, but
unfortunately not with very high precision because an unrelated
star lying 150 mas from the source degrades the measurements.
We discuss the prospect for future observations of the lens flux
below.

We now ask, given a standard Galactic model (Han & Gould
2003; Gould 2000a), how likely it is that detailed information
on a tE = 7 day (but otherwise unconstrained) microlensing
event toward this line of sight (l = 2.37, b = −3.71) would
turn out to imply a foreground (Dl < 4 kpc) thick-disk
star rather than a star in the Galactic bulge? The chance is
just 1/235. Hence, either we were extremely lucky to have
found this object, or brown dwarfs are more common in the
thick disk than our standard model for the mass function
would predict. Specifically, our model assumes a relatively
flat power-law mass function for low-mass stars and brown
dwarfs with dN/d log M ∝ M−0.3 from M = 0.7 M⊙ down
to M = 0.03 M⊙. This model is consistent with results from
observations of nearby thin disk brown dwarfs (Pinfield et al.
2006; Metchev et al. 2008), and thus our detection would imply
that brown dwarfs must be an order of magnitude more common
in the thick disk than in the thin disk, in order that the a priori
probability of detecting this event be !10%. This possibility
should be considered seriously, since the prevalence of old
brown dwarfs is essentially unconstrained by any data, owing
to their faintness.

In this light, we note that two other sets of investigators
have concluded that they must have been “lucky” unless old-
population brown-dwarfs are more common than generally
assumed. First, Burgasser et al. (2003) discovered a halo brown
dwarf, probably within 20 pc of the Sun, a volume that contains
only about seven halo stars over the entire mass range from
the hydrogen-burning limit to a solar mass (Gould 2003). Yet
the survey in which this object was discovered would only
be sensitive to halo brown dwarfs in an extremely narrow
mass range just below this limit (Burgasser 2004). Second,
Gaudi et al. (2008b) analyzed a microlensing event of a nearby
(1 kpc), bright (V = 11) source serendipitously discovered by
an amateur astronomer hunting for comets, finding that it was
most likely a low-mass star or brown dwarf moving at roughly
100 km s−1. Based on the low rate of such events (and the
non-systematic character of the search), they concluded that
they were “probably lucky ... but perhaps not unreasonably so”
to have found this event (see also Fukui et al. 2007). Finally,
Faherty et al. (2009) found 14 high-velocity objects in a sample
of 332 M, L, and T dwarfs, which are consistent with thick-
disk or halo kinematics. Only one of these has J − K < 0,
which would be indicative of an old, low-mass brown dwarf
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2.1. Angular Einstein Radius, θE, from Finite-Source Effects

First, during an EME peak, the lens is very likely to transit
the source, giving rise to distinctive “finite-source” effects that
yield ρ = θ∗/θE, the ratio of the source radius to the Einstein
radius. At high magnification, A = 1/u, where u is the source-
lens separation in units of θE. Since typically θE ∼ 0.5 mas
and θ∗ ∼ 0.5 µas, such effects are expected for Amax ! 1000.
In the present case, we find that the lens transited the source
with an impact parameter of ∼ θ∗/3, which permits a very
accurate determination of ρ = 8.50±0.16×10−4. We evaluate
the source radius θ∗ by extending the method of (Yoo et al.
2004), to three bands, V IH (D. P. Bennett et al. 2009, in
preparation). We obtain calibrated V I data from OGLE-II,
and calibrated H data by aligning SMARTS H band to the
Two Micron All Sky Survey (Skrutskie et al. 2006). We
measure the position of the clump and the source in three
bands (V, I,H )cl = (17.32, 15.28, 13.33) ± (0.1, 0.1, 0.1),
(V, I,H )s = (20.58, 18.91, 17.50) ± (0.02, 0.02, 0.02), We
adopt (MV ,MI ,MH ) = (0.79,−0.25,−1.41) ± (0.08, 0.05,
0.04) based on Alves et al. (2002) adjusted for the α-enhanced
environment of the bulge (Salaris & Girardi 2002). We perform
a Monte Carlo Markov Chain (MCMC) optimization of a model
with four parameters: (1) a Cardelli et al. (1989) extinction law
characterized by RV , (2) the mean visual extinction toward the
clump AV,cl, (3) the mean distance to the clump, R′

0, and (4) the
extinction difference between the source and the clump δAV .
We assume (based on experience with high-resolution spectra
of bulge dwarfs) that δAV = 0 ± 0.1, and we demand that the
resulting (V − I )0,s be consistent with that predicted by Bessell
& Brett (1988) from (V − H )0,s, with an error of 0.03 mag.
We then use the Kervella et al. (2004) (V − H ) color/surface-
brightness relation to derive θ∗ = 0.77 ± 0.03 µas, where the
error also accounts for uncertainty in the model of the source flux
(which affects all three bands in tandem). As a check, we note
that this procedure yields RV I ≡ AV /E(V − I ) = 2.01 ± 0.10,
a typical value for the bulge, and R′

0 = 7.8 ± 0.5 kpc, which
is also consistent with most estimates (keeping in mind that
at ℓ = 2.◦37, the bar is about 200 pc closer than the Galactic
center).

This result implies θE = θ∗/ρ = 0.91±0.04 mas. Combining
this with the measured Einstein timescale, tE = 6.91±0.13 days,
yields a proper motion in the Earth frame (An et al. 2002; Gould
2004) of µgeo = θE/tE = 48 ± 2 mas yr−1.

2.2. Projected Einstein Radius from Terrestrial Parallax, πE

Second, and more dramatically, EMEs are subject to “ter-
restrial parallax” effects (Hardy & Walker 1995; Holz & Wald
1996). If a microlensing event is observed from two different lo-
cations, the source-lens relative trajectory will appear different:
there will be a different impact parameter, u0, and a different
time of closest approach, t0. Since the projected Einstein ra-
dius r̃E = AU/πE is typically of order AU, the second observer
should typically be in solar orbit to notice a significant effect,
and indeed one such space-based measurement has been made
(Dong et al. 2007). However, the main way that microlens par-
allax has been measured in the past is to take advantage of the
moving platform of the Earth, but usually the event must last
a large fraction of a year for this to work (Poindexter et al.
2005). For EMEs, the relevant spatial scale and timescales are
reduced by a factor Amax. For example, if the projected velocity
of the lens is 100 km s−1 in the westward direction, then t0 will
be about 80 s later in Chile than South Africa. Measuring the
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Figure 1. Light curve of OGLE-2007-BLG-224 during 1.4 hours closest to
peak. Observatories in South Africa (Bronberg: green), Canaries (RoboNet LT:
blue) and Chile (OGLE I: red, µFUN SMARTS I: magenta, µFUN SMARTS
H: black) see significantly (several percent) different magnifications due to their
different positions on the Earth. From these differences, one can infer that r̃E
(the projected Einstein radius) is about 10,000 Earth radii. The red and black
curves (and points) deviate slightly over the peak because of different limb
darkening of the source in I and H bands.

peak time of a normal microlensing event (which typically lasts
tE ∼ 30 days) to this precision is virtually impossible. But since
the peaking timescale of this event is roughly the source cross-
ing time, t∗ ≡ ρ tE = 8.5 minutes, such measurements become
quite practical. Indeed, the event passed both South Africa and
the Canaries about 1 minute earlier than Chile, with both time
differences accurate to a few seconds (See Figure 1). In practice,
we simultaneously account for the difference in impact param-
eters and peak times at all locations (An et al. 2002), as well
as the Earth’s orbital motion (which turns out be negligible), to
measure both the microlens parallax πE = 1.97 ± 0.13 and the
direction of lens-source relative motion, 52 ± 5◦ south of west
(see Figure 2). The parallax measurement can also be expressed
in terms of the offsets, ∆t ≡ (∆t0, tE∆u0), from which it is
ultimately derived:

∆t12 = (−18.1, 54.0)s ± (5.8, 2.5)s
∆t23 = (−43.1,−52.0)s ± (2.6, 7.0)s
∆t31 = (61.2,−2.0)s ± (4.3, 5.2)s, (2)

where 1 = South Africa, 2 = Canaries, 3 = Chile.

2.3. Mass, Distance, and Transverse Velocity

The determination of πE and θE yield the mass and relative
parallax

M = θE

κπE
= 0.056 ± 0.004 M⊙

πrel = θEπE = 1.78 ± 0.13 mas (3)

Assuming (as is consistent with its color and flux) that the
source is in the Galactic bulge (πs = 125 µas), the lens parallax

Gould	et	al	2009,	ApJL,	698,	147	

L150 GOULD ET AL. Vol. 698

Figure 2. Reconstruction of microlens flyby. Upper figure: arrow defines locus
of points from which lens and source appear perfectly aligned, passing just
1 Earth diameter from the Earth’s surface. Lower figure: Earth as seen from
OGLE-2007-BLG-224 at the peak of the event. The red squares show the four
observatories (in Chile, South Africa, and the Canaries) that observed near
peak. The black diagonal lines show contours of constant peak time, with time
offsets indicated between Chile and the other two locations. The green curve
shows sunrise, while cyan, blue, and magenta curves show civil, nautical, and
astronomical twilight. As shown in Figure 1, South Africa observations stopped
10 minutes before peak due to developing daylight.

and distance are πl = πrel + πs = 1.90 mas, Dl = AU/πs =
525 ± 40 pc, respectively.

The projected velocity of the lens in the Earth frame is
ṽgeo = µgeo(AU/πrel) = 127 km s−1. To find the projected
velocity in the frame of the Sun, we must remove the motion
of the Earth around the Sun (23 km s−1, almost due east).
We then find ṽhel = 112 km s−1 at 61◦ south of west. This
means that the lens is moving against the direction of Galactic
rotation, just 1◦ out of the Galactic plane (toward Galactic south).
Taking account of the motion of the Sun relative to the local
standard of rest (Dehnen & Binney 1998) as well as the small
mean motion (and its uncertainty) of the source, we find that
the lens is moving at ṽhel = 113 ± 21 km s−1 relative to the
Galactic disk at its location, almost directly counter to Galactic
rotation. This motion is quite consistent with the kinematics
of the Galactic thick disk, which has an asymmetric drift of
43 km s−1 and a dispersion of 49 km s−1 in the direction of
Galactic rotation (Casertano et al. 1990). (It is also consistent
with Galactic halo stars, but with a probability more than 100
times smaller.) Moreover, since the inferred mass is below the
threshold for burning hydrogen, the lens is almost certainly a
brown dwarf. While nearby brown dwarfs of this mass have been
detected (e.g., Burgasser et al. 2006; Faherty et al. 2009), these
are mostly quite young and so still retain the heat generated

during their collapse from a cloud of gas. The thick disk is of
order 11 Gyr old, and hence brown dwarfs have had substantial
time to cool. Only those very near the hydrogen burning limit
are easy to see, and then only if they are relatively nearby.

3. DISCUSSION

Hubble Space Telescope (HST) data were taken in V, I, J,
and H bands ∆t1 = 29 days after peak when the source was
magnified by a factor A = 1.005, and again almost exactly one
year later, ∆t2 = 1.08 years. At the first epoch, the source
and lens were virtually coincident, being separated by only
µgeo∆t1 ∼ 4 mas, i.e., <0.1 pixels, while at the second epoch
they were separated by µhel∆t2 ∼ 47 mas ∼ 1 pixel, where
µhel = 43 mas yr−1 is the heliocentric proper motion. These
observations confirm that the excess flux (above the source flux
predicted from the microlensing fit) is consistent with zero, but
unfortunately not with very high precision because an unrelated
star lying 150 mas from the source degrades the measurements.
We discuss the prospect for future observations of the lens flux
below.

We now ask, given a standard Galactic model (Han & Gould
2003; Gould 2000a), how likely it is that detailed information
on a tE = 7 day (but otherwise unconstrained) microlensing
event toward this line of sight (l = 2.37, b = −3.71) would
turn out to imply a foreground (Dl < 4 kpc) thick-disk
star rather than a star in the Galactic bulge? The chance is
just 1/235. Hence, either we were extremely lucky to have
found this object, or brown dwarfs are more common in the
thick disk than our standard model for the mass function
would predict. Specifically, our model assumes a relatively
flat power-law mass function for low-mass stars and brown
dwarfs with dN/d log M ∝ M−0.3 from M = 0.7 M⊙ down
to M = 0.03 M⊙. This model is consistent with results from
observations of nearby thin disk brown dwarfs (Pinfield et al.
2006; Metchev et al. 2008), and thus our detection would imply
that brown dwarfs must be an order of magnitude more common
in the thick disk than in the thin disk, in order that the a priori
probability of detecting this event be !10%. This possibility
should be considered seriously, since the prevalence of old
brown dwarfs is essentially unconstrained by any data, owing
to their faintness.

In this light, we note that two other sets of investigators
have concluded that they must have been “lucky” unless old-
population brown-dwarfs are more common than generally
assumed. First, Burgasser et al. (2003) discovered a halo brown
dwarf, probably within 20 pc of the Sun, a volume that contains
only about seven halo stars over the entire mass range from
the hydrogen-burning limit to a solar mass (Gould 2003). Yet
the survey in which this object was discovered would only
be sensitive to halo brown dwarfs in an extremely narrow
mass range just below this limit (Burgasser 2004). Second,
Gaudi et al. (2008b) analyzed a microlensing event of a nearby
(1 kpc), bright (V = 11) source serendipitously discovered by
an amateur astronomer hunting for comets, finding that it was
most likely a low-mass star or brown dwarf moving at roughly
100 km s−1. Based on the low rate of such events (and the
non-systematic character of the search), they concluded that
they were “probably lucky ... but perhaps not unreasonably so”
to have found this event (see also Fukui et al. 2007). Finally,
Faherty et al. (2009) found 14 high-velocity objects in a sample
of 332 M, L, and T dwarfs, which are consistent with thick-
disk or halo kinematics. Only one of these has J − K < 0,
which would be indicative of an old, low-mass brown dwarf



Terrestrial	Parallax	No. 2, 2009 THE EXTREME MICROLENSING EVENT OGLE-2007-BLG-224 L149

2.1. Angular Einstein Radius, θE, from Finite-Source Effects

First, during an EME peak, the lens is very likely to transit
the source, giving rise to distinctive “finite-source” effects that
yield ρ = θ∗/θE, the ratio of the source radius to the Einstein
radius. At high magnification, A = 1/u, where u is the source-
lens separation in units of θE. Since typically θE ∼ 0.5 mas
and θ∗ ∼ 0.5 µas, such effects are expected for Amax ! 1000.
In the present case, we find that the lens transited the source
with an impact parameter of ∼ θ∗/3, which permits a very
accurate determination of ρ = 8.50±0.16×10−4. We evaluate
the source radius θ∗ by extending the method of (Yoo et al.
2004), to three bands, V IH (D. P. Bennett et al. 2009, in
preparation). We obtain calibrated V I data from OGLE-II,
and calibrated H data by aligning SMARTS H band to the
Two Micron All Sky Survey (Skrutskie et al. 2006). We
measure the position of the clump and the source in three
bands (V, I,H )cl = (17.32, 15.28, 13.33) ± (0.1, 0.1, 0.1),
(V, I,H )s = (20.58, 18.91, 17.50) ± (0.02, 0.02, 0.02), We
adopt (MV ,MI ,MH ) = (0.79,−0.25,−1.41) ± (0.08, 0.05,
0.04) based on Alves et al. (2002) adjusted for the α-enhanced
environment of the bulge (Salaris & Girardi 2002). We perform
a Monte Carlo Markov Chain (MCMC) optimization of a model
with four parameters: (1) a Cardelli et al. (1989) extinction law
characterized by RV , (2) the mean visual extinction toward the
clump AV,cl, (3) the mean distance to the clump, R′

0, and (4) the
extinction difference between the source and the clump δAV .
We assume (based on experience with high-resolution spectra
of bulge dwarfs) that δAV = 0 ± 0.1, and we demand that the
resulting (V − I )0,s be consistent with that predicted by Bessell
& Brett (1988) from (V − H )0,s, with an error of 0.03 mag.
We then use the Kervella et al. (2004) (V − H ) color/surface-
brightness relation to derive θ∗ = 0.77 ± 0.03 µas, where the
error also accounts for uncertainty in the model of the source flux
(which affects all three bands in tandem). As a check, we note
that this procedure yields RV I ≡ AV /E(V − I ) = 2.01 ± 0.10,
a typical value for the bulge, and R′

0 = 7.8 ± 0.5 kpc, which
is also consistent with most estimates (keeping in mind that
at ℓ = 2.◦37, the bar is about 200 pc closer than the Galactic
center).

This result implies θE = θ∗/ρ = 0.91±0.04 mas. Combining
this with the measured Einstein timescale, tE = 6.91±0.13 days,
yields a proper motion in the Earth frame (An et al. 2002; Gould
2004) of µgeo = θE/tE = 48 ± 2 mas yr−1.

2.2. Projected Einstein Radius from Terrestrial Parallax, πE

Second, and more dramatically, EMEs are subject to “ter-
restrial parallax” effects (Hardy & Walker 1995; Holz & Wald
1996). If a microlensing event is observed from two different lo-
cations, the source-lens relative trajectory will appear different:
there will be a different impact parameter, u0, and a different
time of closest approach, t0. Since the projected Einstein ra-
dius r̃E = AU/πE is typically of order AU, the second observer
should typically be in solar orbit to notice a significant effect,
and indeed one such space-based measurement has been made
(Dong et al. 2007). However, the main way that microlens par-
allax has been measured in the past is to take advantage of the
moving platform of the Earth, but usually the event must last
a large fraction of a year for this to work (Poindexter et al.
2005). For EMEs, the relevant spatial scale and timescales are
reduced by a factor Amax. For example, if the projected velocity
of the lens is 100 km s−1 in the westward direction, then t0 will
be about 80 s later in Chile than South Africa. Measuring the
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Figure 1. Light curve of OGLE-2007-BLG-224 during 1.4 hours closest to
peak. Observatories in South Africa (Bronberg: green), Canaries (RoboNet LT:
blue) and Chile (OGLE I: red, µFUN SMARTS I: magenta, µFUN SMARTS
H: black) see significantly (several percent) different magnifications due to their
different positions on the Earth. From these differences, one can infer that r̃E
(the projected Einstein radius) is about 10,000 Earth radii. The red and black
curves (and points) deviate slightly over the peak because of different limb
darkening of the source in I and H bands.

peak time of a normal microlensing event (which typically lasts
tE ∼ 30 days) to this precision is virtually impossible. But since
the peaking timescale of this event is roughly the source cross-
ing time, t∗ ≡ ρ tE = 8.5 minutes, such measurements become
quite practical. Indeed, the event passed both South Africa and
the Canaries about 1 minute earlier than Chile, with both time
differences accurate to a few seconds (See Figure 1). In practice,
we simultaneously account for the difference in impact param-
eters and peak times at all locations (An et al. 2002), as well
as the Earth’s orbital motion (which turns out be negligible), to
measure both the microlens parallax πE = 1.97 ± 0.13 and the
direction of lens-source relative motion, 52 ± 5◦ south of west
(see Figure 2). The parallax measurement can also be expressed
in terms of the offsets, ∆t ≡ (∆t0, tE∆u0), from which it is
ultimately derived:

∆t12 = (−18.1, 54.0)s ± (5.8, 2.5)s
∆t23 = (−43.1,−52.0)s ± (2.6, 7.0)s
∆t31 = (61.2,−2.0)s ± (4.3, 5.2)s, (2)

where 1 = South Africa, 2 = Canaries, 3 = Chile.

2.3. Mass, Distance, and Transverse Velocity

The determination of πE and θE yield the mass and relative
parallax

M = θE

κπE
= 0.056 ± 0.004 M⊙

πrel = θEπE = 1.78 ± 0.13 mas (3)

Assuming (as is consistent with its color and flux) that the
source is in the Galactic bulge (πs = 125 µas), the lens parallax
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Figure 2. Reconstruction of microlens flyby. Upper figure: arrow defines locus
of points from which lens and source appear perfectly aligned, passing just
1 Earth diameter from the Earth’s surface. Lower figure: Earth as seen from
OGLE-2007-BLG-224 at the peak of the event. The red squares show the four
observatories (in Chile, South Africa, and the Canaries) that observed near
peak. The black diagonal lines show contours of constant peak time, with time
offsets indicated between Chile and the other two locations. The green curve
shows sunrise, while cyan, blue, and magenta curves show civil, nautical, and
astronomical twilight. As shown in Figure 1, South Africa observations stopped
10 minutes before peak due to developing daylight.

and distance are πl = πrel + πs = 1.90 mas, Dl = AU/πs =
525 ± 40 pc, respectively.

The projected velocity of the lens in the Earth frame is
ṽgeo = µgeo(AU/πrel) = 127 km s−1. To find the projected
velocity in the frame of the Sun, we must remove the motion
of the Earth around the Sun (23 km s−1, almost due east).
We then find ṽhel = 112 km s−1 at 61◦ south of west. This
means that the lens is moving against the direction of Galactic
rotation, just 1◦ out of the Galactic plane (toward Galactic south).
Taking account of the motion of the Sun relative to the local
standard of rest (Dehnen & Binney 1998) as well as the small
mean motion (and its uncertainty) of the source, we find that
the lens is moving at ṽhel = 113 ± 21 km s−1 relative to the
Galactic disk at its location, almost directly counter to Galactic
rotation. This motion is quite consistent with the kinematics
of the Galactic thick disk, which has an asymmetric drift of
43 km s−1 and a dispersion of 49 km s−1 in the direction of
Galactic rotation (Casertano et al. 1990). (It is also consistent
with Galactic halo stars, but with a probability more than 100
times smaller.) Moreover, since the inferred mass is below the
threshold for burning hydrogen, the lens is almost certainly a
brown dwarf. While nearby brown dwarfs of this mass have been
detected (e.g., Burgasser et al. 2006; Faherty et al. 2009), these
are mostly quite young and so still retain the heat generated

during their collapse from a cloud of gas. The thick disk is of
order 11 Gyr old, and hence brown dwarfs have had substantial
time to cool. Only those very near the hydrogen burning limit
are easy to see, and then only if they are relatively nearby.

3. DISCUSSION

Hubble Space Telescope (HST) data were taken in V, I, J,
and H bands ∆t1 = 29 days after peak when the source was
magnified by a factor A = 1.005, and again almost exactly one
year later, ∆t2 = 1.08 years. At the first epoch, the source
and lens were virtually coincident, being separated by only
µgeo∆t1 ∼ 4 mas, i.e., <0.1 pixels, while at the second epoch
they were separated by µhel∆t2 ∼ 47 mas ∼ 1 pixel, where
µhel = 43 mas yr−1 is the heliocentric proper motion. These
observations confirm that the excess flux (above the source flux
predicted from the microlensing fit) is consistent with zero, but
unfortunately not with very high precision because an unrelated
star lying 150 mas from the source degrades the measurements.
We discuss the prospect for future observations of the lens flux
below.

We now ask, given a standard Galactic model (Han & Gould
2003; Gould 2000a), how likely it is that detailed information
on a tE = 7 day (but otherwise unconstrained) microlensing
event toward this line of sight (l = 2.37, b = −3.71) would
turn out to imply a foreground (Dl < 4 kpc) thick-disk
star rather than a star in the Galactic bulge? The chance is
just 1/235. Hence, either we were extremely lucky to have
found this object, or brown dwarfs are more common in the
thick disk than our standard model for the mass function
would predict. Specifically, our model assumes a relatively
flat power-law mass function for low-mass stars and brown
dwarfs with dN/d log M ∝ M−0.3 from M = 0.7 M⊙ down
to M = 0.03 M⊙. This model is consistent with results from
observations of nearby thin disk brown dwarfs (Pinfield et al.
2006; Metchev et al. 2008), and thus our detection would imply
that brown dwarfs must be an order of magnitude more common
in the thick disk than in the thin disk, in order that the a priori
probability of detecting this event be !10%. This possibility
should be considered seriously, since the prevalence of old
brown dwarfs is essentially unconstrained by any data, owing
to their faintness.

In this light, we note that two other sets of investigators
have concluded that they must have been “lucky” unless old-
population brown-dwarfs are more common than generally
assumed. First, Burgasser et al. (2003) discovered a halo brown
dwarf, probably within 20 pc of the Sun, a volume that contains
only about seven halo stars over the entire mass range from
the hydrogen-burning limit to a solar mass (Gould 2003). Yet
the survey in which this object was discovered would only
be sensitive to halo brown dwarfs in an extremely narrow
mass range just below this limit (Burgasser 2004). Second,
Gaudi et al. (2008b) analyzed a microlensing event of a nearby
(1 kpc), bright (V = 11) source serendipitously discovered by
an amateur astronomer hunting for comets, finding that it was
most likely a low-mass star or brown dwarf moving at roughly
100 km s−1. Based on the low rate of such events (and the
non-systematic character of the search), they concluded that
they were “probably lucky ... but perhaps not unreasonably so”
to have found this event (see also Fukui et al. 2007). Finally,
Faherty et al. (2009) found 14 high-velocity objects in a sample
of 332 M, L, and T dwarfs, which are consistent with thick-
disk or halo kinematics. Only one of these has J − K < 0,
which would be indicative of an old, low-mass brown dwarf
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Fig. 1.— Lightcurve of OGLE-2014-BLG-0939 as seen by OGLE from Earth (black) and
Spitzer (red) ∼ 1 AU to the West. While both are well-represented by Paczyński (1986)

curves (blue), they have substantially different maximum magnifications and times of max-
imum, whose differences yield a measurement of the “microlens parallax” vector πE. The
dashed portion of the Spitzer curve extends the model to what Spitzer could have observed if

it were not prevented from doing so by its Sun-angle constraints. Light curves are aligned to
the OGLE I-band scale (as is customary), even though Spitzer observations are at 3.6 µm.

Lower panel shows residuals.
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3	Types	of	Parallax	due	to	2	Effects	

•  MoDon	of	the	observer		
à	Orbital/Annual	Parallax	

•  SeparaDon	between	2	observers	
à 	Satellite	parallax	
à 	Terrestrial	parallax	


