Parallaxes: Orbital, Terrestrial, Satellite

Jennifer Yee
 SAO

What is parallax?

3 Types of Parallax due to 2 Effects

- Motion of the observer
\rightarrow Orbital/Annual Parallax
- Separation between 2 observers
\rightarrow Satellite parallax
\rightarrow Terrestrial parallax

Assume a frame in which the lens is moving and the source is stationary.

What matters is the source-lens relative parallax.

...but this is not what we measure.

The observed magnification depends only on the relative (projected) separation between the source and lens.

$$
A(t)=\frac{u(t)^{2}+2}{u(t) \sqrt{u(t)^{2}+4}}
$$

The basic PSPL curve assumes uniform, rectilinear motion (i.e. a constant relative velocity).

We only care about the relative speed and the displacement Δu (i.e. relative to the Einstein ring).

Why care about microlens parallax?

1. It's physics.
2. It lets us measure physical scales (if we have θ_{E}):
a. absolute masses for the lenses, and therefore the planets.
b. distances to the lens (planetary) systems
c. (projected) separations between the planet and star

The lens mass is measured from lightcurve features without measuring light from the lens.

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{star}}=\theta_{\mathrm{E}} /\left(\mathrm{K} \pi_{\mathrm{E}}\right) \\
& \mathrm{K}=8.41 \mathrm{mas}\left(\mathrm{M}_{\text {sun }}\right)^{-1}
\end{aligned}
$$

Fun fact:

Microlens Parallax Is a Vector!?

2 Components to the motion of Proxima Centauri (or any star)

Sahu et al. 2014 ApJ 792, 89

In microlensing, direction matters only if there is parallax.

	Normal Astronomy	Microlensing
Proper Motion	Vector	Scalar
Parallax	Scalar	Vector

The magnification equation depends only on the scalar $u(t)$.

However, microlens parallax does depend on direction.
perpendicularPisplacement the trajectolyng the trajectory

Orbital Parallax

Orbital Parallax

Orbital Parallax

Component PARALLEL to lens trajectory \rightarrow ASYMMETRIC Distortion

Component PERPENDICULAR to lens trajectory \rightarrow SYMMETRIC Distortion

Are we more likely to see annual parallax for an event with

$$
\mathrm{t}_{\mathrm{E}}=10 \text { days }
$$

or

$$
\mathrm{t}_{\mathrm{E}}=100 \text { days? }
$$

Microlens parallax is easier to measure

 in Spring and Fall.
Alcock et al. 1995: First detection of microlens parallax.

Without parallax, the point lens fit cannot match the asymmetry in the light curve.

The Finite Source Effect

Angular size of the Source Star (known)
measured

Angular size of the Einstein ring.

Yee et al. 2015, ApJ, 802, 76

Yee et al. 2015, ApJ, 802, 76

Yee et al. 2015, ApJ, 802, 76

Because the parallax effect depends on the OBSERVER, the critical scale is the size of the Einstein ring in the OBSERVER PLANE:

Udalski, Yee et al. 2015, ApJ, 799, 237

Udalski, Yee et al. 2015, ApJ, 799, 237

Udalski, Yee et al. 2015, ApJ, 799, 237

Yutong Shan's Poster: binary w/Spitzer parallax

Satellite parallax programs have 2 goals

1. Measure the masses of planets (and other interesting objects)
2. Measure the distribution of planets throughout the galaxy.

Satellite parallax is easier to measure than annual parallax because the scales are better matched.

	Observational Scale	Relevant Einstein Scale
Satellite Parallax	1 AU	10 AU
Annual Parallax	365 days	30 days

Terrestrial Parallax

Gould et al 2009, ApJL, 698, 147

Terrestrial Parallax

Gould et al 2009, ApJL, 698, 147

Terrestrial Parallax

Gould et al 2009, ApJL, 698, 147

Terrestrial Parallax

Gould et al 2009, ApJL, 698, 147

Terrestrial Parallax

Gould et al 2009, ApJL, 698, 147

Parallax \& WFIRST

WFIRST will be at L2
\rightarrow Annual Parallax Effect (but with better photometric precision)
\rightarrow Possibility to measure Earth-L2 parallax (separation 0.01AU)
WFIRST will observe in Spring and Fall
\rightarrow Better for annual parallax

4-fold

degeneracy

Yee et al. 2015, ApJ, 802, 76

Yee et al. 2015, ApJ, 802, 76

3 Types of Parallax due to 2 Effects

- Motion of the observer
\rightarrow Orbital/Annual Parallax
- Separation between 2 observers
\rightarrow Satellite parallax
\rightarrow Terrestrial parallax

