Overview of the WFIRST Microlensing Survey

Matthew Penny Sagan Fellow, Ohio State University

Sagan Summer Workshop, August 2017

Overview

- Microlensing Surveys Order of Magnitude
- The WFIRST microlensing survey
- Overview of WFIRST Microlensing Science
- Areas you can Contribute

• Goal: Detect ~100 Earths

- Goal: Detect ~100 Earths
- Detection Efficiency: 0.01* (Bennett & Rhie 1998) *with continuous observations

 ⁰
 ¹
 ²
 ⁴
 ⁵
 ⁶
 ⁷
 ^{magnification [mag]}
 ^{nonlinear superposition}

Kubas et al (2008)

- Goal: Detect ~100 Earths
- Detection Efficiency: 0.01 (Bennett & Rhie 1996)
 - \rightarrow ~10,000 microlensing events
- Event rates:

Optical Depth

Optical Depth $\tau(D_s)$

- = fraction of sky covered by Einstein rings
- ~ Number of intervening stars/deg² x $\pi \theta_{E}^{2}$
- $\sim 10^8 \ \mu as^2$ / $deg^2 \sim 10^2$ / $3600^2 \sim few \ x \ 10^6$

Event Rate

Event rate Γ

= Area swept out by all Einstein rings per year x Source stars per deg²

~ mas x 5 mas / year x (10⁸ lenses) x (10⁶-10⁸ sources / deg²⁾ ~ 40-4000 / deg² /year

Event rate per star ~ few x 10^{-5}

- Goal: Detect ~100 Earths
- Detection Efficiency: 0.01 (Bennett & Rhie 1996)
 - \rightarrow ~10,000 microlensing events
- Event rates: 5x10-5 per star per year
 - → Monitor 200 million star years

- 200 million star years
 - Ground based imaging (e.g., OGLE)
 - 5 million stars / deg² (detected)
 - 1.4 deg² imager
 - 28 fields for 1 year, 3 fields for 10 years
 - For continuous observations (24 hrs/day, 365 days/year)
 - 500 fields for 1 year, 18 fields for 10 years
 - ~Accounting for seasons and night/day cycles

- Observational Timescales:
 - Planets around stars

Lens Type	$M_\ell \; [M_\odot]$	$\boldsymbol{D}_\ell \; [\mathbf{kpc}]$						
		1.0	2.0	3.0	4.0	5.0	6.0	7.0
Black hole	10					225.5	168.1	110.1
G Dwarf	1					71.3	53.2	34.8
M Dwarf	0.3					39.1	29.1	19.1
M Dwarf	0.1					22.6	16.8	11.0
Brown Dwarf	0.01					7.1	5.3	3.5
Jupiter	0.001					2.3	1.7	1.1

- Observational Timescales:
 - Planets around stars

Lens Type	$M_\ell \; [M_\odot]$	$\boldsymbol{D}_\ell [\mathbf{kpc}]$						
		1.0	2.0	3.0	4.0	5.0	6.0	7.0
Black hole C Dwarf	10 1					225.5 71.3	168.1 53 2	110.1 34.8
M Dwarf	0.3					39.1	29.1	19.1
M Dwarf Brown Dwarf Jupiter	$0.1 \\ 0.01 \\ 0.001$					22.6 7.1 2.3	$16.8 \\ 5.3 \\ 1.7$	$11.0 \\ 3.5 \\ 1.1$

- Observational Timescales:
 - Planets around stars

Lens Type	$M_\ell \; [M_\odot]$				$oldsymbol{D}_\ell$	[kpc]		
		1.0	2.0	3.0	4.0	5.0	6.0	7.0
Black hole	10					225.5	168.1	110.1
G Dwarf	1					71.3	53.2	34.8
M Dwarf	0.3					39.1	29.1	19.1
M Dwarf	0.1					22.6	16.8	11.0
Brown Dwarf	0.01					7.1	5.3	3.5
Jupiter	0.001					2.3	1.7	1.1
Neptune	3x10 ⁻⁵ 3x10 ⁻⁶					0.4	0.3	0.2 days
Mars	3x10-7					0.9	0.7	0.5 hours

- Observational Timescales:
 - Source diameter crossing time

Radius (R _{sun})	Diameter crossing time (hours)
10 (Red giant)	22
1 (G dwarf)	2.2
0.3 (M dwarf)	0.7

- 200 million star years
 - Ground based imaging (e.g., OGLE)
 - 5 million stars / deg² (detected)
 - 1.4 deg² imager
 - 15 minute cadence (~2 minutes for exposure + overhead)
 - Need 500 fields for 1 year, 18 fields for 10 years
 - Max 7 fields at necessary cadence

OGLE-IV fields

Credit: K. Ulaczyk, J. Skowron

Limitations of the Ground

- Mass ratio of Earth (for 0.3 Msun) = 10^{-5}
- OGLE-IV running 6 years, no planets with mass ratio less than few~10⁻⁵
- Expected 3/18 x 6/10 x 100 = 10
 - But, calculation was likely optimistic
- KMTNet increases area (12 vs 4 deg²) and time coverage (3 vs 1 site)
 - Expect ~20 Earths in 10 years under same assumptions

Crowded Fields

- Ground:
 - ~1" seeing
 - ~1 arcsec² seeing disk
 - 5 million stars/deg²
 - = 0.4 stars/arcsec²

Crowded Fields

- Space:
 - 1m telescope @ 1um
 - ~0.25" FWHM
 - ~1/16 arcsec² disk
 - 80 million stars/deg²

Crowded Fields

Space-based survey

- >= 1 m telescope
- 200 million stars \rightarrow ~2.5 deg²
- 15 minute cadence, ~2 min/field
- \rightarrow 0.36 deg² Field of View
- 1 year survey (total time)

• 200 million stars \rightarrow 10000 events \rightarrow 100 Earths

WFIRST

- 2.4 m mirror
- 0.9-2.0 um IR detectors
- 18 4k x 4k H4RGs
- 0.28 deg² FoV
- 0.16" FWHM
- 5 year mission,
 - ~1 year microlensing

Why Infrared?

- Lots of dust in the Galactic plane
- Low IR background from space
- Can get away with bigger pixels

WFIRST's Orbit

• L2 orbit

Hubble

570 kr

- Thermally stable environment
- But lower data rates

384,400 km

WFIRST's Seasons

WFIRST Microlensing Masses

e.g., OGLE-2005-BLG-169 (Gould+06) HST imaging in 2011 (Bennett+15)

- After a few years, lens and source star may separate enough to be partially resolved
- Measurements of the lenssource separation and lens flux can be used to solve for the mass and distance to the lens
- Assumes no luminous companions or interloping stars

Estimating the number of detections

Penny et al. (2013, 2017 in prep)

Caveats

- Current best estimates of WFIRST yields are a factor of a 2-3 lower than the Spergel et al. (2015) report, due to:
 - Improved estimates of corrections to Galactic model
 - Reduced slew performance for the current observatory design (10 \rightarrow 8 fields)
 - Some other factors
- Observatory design only recently fixed for WIETR* and SRD reviews, and will begin to change once more after these.
 Design Reference Mission still under development

*WIETR = WFIRST Independent External Technical/Management/Cost Review

WFIRST Yields

Bound Planets

Free-floating Planets

Mass (Mearth)	1/star	Cassan+ 2012
0.1	6.6	14
1	58	120
10	293	363
100	1189	275
1000	3470	149
10000	7540	60

Mass (Mearth)	1/star	Cassan+ 2012
0.1	3.0	6.2
1	16	32
10	60	75
100	216	50
1000	708	31
10000	2290	18

Deltas

Still out of date, but reasonably indicates the order of magnitude of the changes

The WFIRST microlensing survey: What do we learn?

Spergel et al. (2015), Penny et al. 2017 (in prep)

Really low-mass planets

Really low-mass planets

The WFIRST microlensing survey: What do we learn?

Spergel et al. (2015), Penny et al. 2017 (in prep)

Failed Cores?

- Only a sub-dominant fraction of systems have gas giant planets
- A Larger Fraction host super-Earths/mini-Neptunes, but only ~1/2
- Planet formation is ubiquitous, so could the remainder of systems be teeming with planetary cores that failed to grow?

WFIRST's Mass Measurements Will Help Immensely

The WFIRST microlensing survey: What do we learn?

Spergel et al. (2015), Penny et al. 2017 (in prep)

WFIRST will Measure How Ejected Mass is Partitioned

- Ejected objects
- Exo-Kuiper belts and Exo-Oort clouds
- Possible to separate these populations statistically by searching for light from a putative host

The WFIRST microlensing survey: What do we learn?

Spergel et al. (2015), Penny et al. 2017 (in prep)

Microlensing in the Habitable Zone

- Transits most sensitive to HZ of low-mass hosts
- Microlensing most sensitive to HZ of highmass hosts

-but how sensitive?

Habitable Zone planets

$$M = 0.94 M_{\oplus}$$
 $a = 1.46 \text{ AU}$ $M_{\star} = 0.95 M_{\odot}$ $\Delta \chi^2 = 939$

Potential WFIRST Projects [speak with MP, Scott Gaudi, Dave Bennett, +]

- We have not fully explored what parallax information we can get from WFIRST (+others) [Jennifer Yee]
- Trade-off between depth and resolution with respect to AO vs WFIRST mass measurements [JP Beaulieu, Calen Henderson]
- Improving galactic model inputs, understand the uncertainties
- Multiple planet systems
- Planets in binary systems
- Exomoons
- UKIRT IR Microlensing survey [Yossi Shvartzvald]
- Astrometric Microlensing [Lukasz Wyrzykowski, Kailash Sahu]
- Understanding WFIRST systematics [Sebastiano Calchi Novati, Sean Carey]
- Non microlensing science with survey [Dan Huber, Ben Montet]

Non WFIRST Projects [US-based attendees to speak to]

- KMTNet data releases (2015 available, more on its way) [Jennifer Yee]
- K2 C9 data reduction very close to ready [MP, Dave Bennett] + lots of ground-based data [MP, Etienne Bachelet, Rachel Street]
- LSST microlensing [Rachel Street, MP]
- Gaia microlensing [Lukasz Wyrzykowski, Katarzyna Kruszyńska]
- Also, ZTF, PanSTARRS, ASAS-SN, EvryScope, ...
- Spitzer Microlensing [Jennifer Yee, Yossi Shvartzvald, Sebastiano Calchi Novati]
- Parallax survey interpretation, meta analysis

• ..

Think Small?

- Lots of robotic ".50-.50" telescopes
 - LCOGT, DEMONEXT
- A new era for follow-up?
 - OGLE, MOA Surveys covering a wider area than ever
 - Networks of follow-up telescopes (LCOGT, PROMPT/SkyNet, SONG, TESS-FUN...)
 - Easier than ever to conduct follow-up planet searches