OBSERVING TRANSITING PLANETS WITH WFIRST

Benjamin Montet NASA Sagan Fellow University of Chicago 2017 Sagan Workshop, Pasadena, CA

AUDIENCE PARTICIPATION

WHAT DOES MICROLENSING **NOT** TEACH US ABOUT PLANETARY SYSTEMS?

- Planet radii
- Atmospheres
- Orbital Resonances
- Rings
- Planet-star spin-orbit (mis)alignment
- Planet inclinations
- Oblateness

Cassan+ 2008

TRANSITING PLANETS **PROVIDE INFORMATION** THAT MICROLENSING CANNOT

WFIRST WILL BE A TRANSIT-FINDING MACHINE ITS TRANSITING PLANETS WILL

ITS TRANSITING PLANETS WILL CONSTRAIN PLANET FORMATION

WHAT IS A TRANSIT, ANYWAY?

• Planet radii

- Atmospheres
- Orbital Resonances
- Rings
- Planet-star spin-orbit (mis)alignment
- Planet inclinations

• Planet radii

- Atmospheres
- Orbital Resonances
- Rings
- Planet-star spin-orbit (mis)alignment
- Planet inclinations

• Planet radii

Atmospheres

- Orbital Resonances
- Rings
- Planet-star spin-orbit (mis)alignment
- Planet inclinations

Image credit NASA (really)

PLANET SIZE IS A FUNCTION OF WAVELENGTH

Dalba+ 2015

- Planet radii
- Atmospheres
- Orbital Resonances
- Rings
- Planet-star spin-orbit (mis)alignment
- Planet inclinations

- Planet radii
- Atmospheres
- Orbital Resonances
- Rings
- Planet-star spin-orbit (mis)alignment
- Planet inclinations

Nesvorny+2013

- Planet radii
- Atmospheres
- Orbital Resonances
- Rings
- Planet-star spin-orbit (mis)al^{Tegged} -0.c
 - Planet inclinations

Aizawa+ 2017

- Planet radii
- Atmospheres
- Orbital Resonances
- Rings

• Planet-star spin-orbit (mis)alignment

Planet inclinations

Image credit NASA (really)

- Planet radii
- Atmospheres
- Orbital Resonances
- Rings

• Planet-star spin-orbit

Planet inclinations

- Planet radii
- Atmospheres
- Orbital Resonances
- Rings
- Planet-star spin-orbit (mis)alignment
- **Planet** inclinations •

Hirano+2012

TRANSITS ARE RARE

TRANSITS ARE UNCOMMON

Johnson+2011

TRANSITS ARE SMALL

Observing Baseline

Number of Stars

KEPLER VS WFIRST

KEPLER

WFIRST

Observing Baseline

Number of Stars

KEPLER VS WFIRST

KEPLER

CAN WFIRST FIND TRANSITS?

CAN WFIRST FIND TRANSITS?

Montet, Yee, and Penny (2017)

CAN WFIRST FIND TRANSITS?

Montet, Yee, and Penny (2017)

YES!

WFIRST CAN FIND TRANSITS!

16	W149 = 15.0, Entire Mission												16		V	V14	9 =	= 19).5,	Ent	ire	Mis	sior	า	
10	100	100	100	100	100	100	100	100	100	100	100	88	10	100	100	100	100	100	100	100	100	100	100	100	87
8	100	100	100	100	100	100	100	100	100	100	100	87	o	100	100	100	100	100	100	100	100	100	100	100	86
	100	100	100	100	100	100	100	100	100	100	100	87	0	100	100	100	100	100	100	100	99	99	98	96	82
	100	100	100	100	100	100	100	100	100	100	100	86	л	100	99	99	98	97	95	91	85	74	61	47	31
	100	100	100	100	100	100	99	99	99	98	96	82	4	92	84	75	61	46	32	19	10	4	2	0	0
2	99	99	99	98	97	94	90	84	74	60	45	28	2	21	10	4	1	1	0	0	0	0	0	0	0
Z	91	85	74	62	47	33	20	10	4	1	1	0	2	0	0	0	0	0	0	0	0	0	0	0	0
1	20	11	4	2	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
1	1	2		4		5	8		16		32		4	1	2	2	2	1	8	3	1	6	3	2	64
									Pl	an	et	Pe	riod	(D	ay	s)									

Montet, Yee, and Penny (2017)

Observing Baseline

Number of Stars

Observing Baseline

Number of Stars

Observing Baseline

Number of Stars

Observing Baseline

Number of Stars

16	W149 = 15.0, Entire Mission												16W149 = 19.5, Entire Mission												
10	100	100	100	100	100	100	100	100	100	100	100	88	10	100	100	100	100	100	100	100	100	100	100	100	87
8	100	100	100	100	100	100	100	100	100	100	100	87	0	100	100	100	100	100	100	100	100	100	100	100	86
	100	100	100	100	100	100	100	100	100	100	100	87	0	100	100	100	100	100	100	100	99	99	98	96	82
	100	100	100	100	100	100	100	100	100	100	100	86	л	100	99	99	98	97	95	91	85	74	61	47	31
	100	100	100	100	100	100	99	99	99	98	96	82	4	92	84	75	61	46	32	19	10	4	2	0	0
2	99	99	99	98	97	94	90	84	74	60	45	28	2	21	10	4	1	1	0	0	0	0	0	0	0
Z	91	85	74	62	47	33	20	10	4	1	1	0	2	0	0	0	0	0	0	0	0	0	0	0	0
1	20	11	4	2	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
1	1	2		4		8		16		32		6	4	1	2	2	2	1	5	3	1	6	3	2	64
									ΡI	an	et	Pe	riod	(D	ay	s)									

WFIRST CAN FIND TRANSITS!

Montet, Yee, and Penny (2017)

Relative Flux + Offset

Montet, Yee, and Penny (2017)

CONFIRMING WFIRST PLANETS

NFIRMING WFIRST PLANE TS

Montet, Yee, and Penny (2017)

SECONDARY ECLIPSES WITH WFIRST

DYNAMICALLY INTERACTING PLANETS WITH WFIRST

Montet, Yee, and Penny (2017)

Kepler Search Space 3,000 light years -

Perseus Arm

Milky Way Galaxy

Sagittarius Arm

Jon Lomberg

Montet, Yee, and Penny (2017)

WFIRST IS PROBING A NEW GALACTIC ENVIRONMENT

How do giant planets form and evolve around the most metal-rich stars?

Do our expectations from the local part of the galaxy (RVs, Kepler) hold true halfway across the galaxy?

Are planetary atmospheres different? What about orbital eccentricities?

Do hot Jupiters have friends? Are timing variations common?

TRANSITING PLANETS **PROVIDE INFORMATION** THAT MICROLENSING CANNOT

WFIRST WILL BE A TRANSIT-FINDING MACHINE ITS TRANSITING PLANETS WILL

ITS TRANSITING PLANETS WILL CONSTRAIN PLANET FORMATION