Observing Spin-Orbit Misalignment in Early-Type Systems

A Multi-Year Transit Search for Proxima Centauri b

Dax Feliz^[1,2], Karen Collins^[2], Keivan Stassun^[2], David Blank^[3], Graeme White^[3] Fisk University^[1], Vanderbilt University^[2], University of Southern Queensland (Australia)^[3]

- Using a combination of SKYNET and KELT-FUN data spanning from 2006-2008, 2014-2017 we have
 ~ 332 nights of time series photometric observations of Proxima Centauri.
- We have combined our datasets and are in the process of running the BLS VARTOOLS algorithm to search for periodic events

Some Example Light Curves

• Expected Transit Durtation: ~ 1 to 2 hours

Expected Transit Depth: 5 to 10 mmag

Binned Anglada-2016 Period & T c Data

Mear

ProxCen binned data

1.04

1.03

1.02

<u>×</u> 1.0

Preliminary BLS Search: 1-30 days

Microlensing Events in the Galactic Center with the VVV data

Gabriela Navarro Supervisor: Dr. Dante Minniti

Catelan et al. 2013

VISTA telescope Diameter: 4m Cerro Paranal VIRCAM FoV : 1.5 deg2 (tile

Detection and Fitting Procedure

Results ~ 200 microlensing events

Future Work

Extend the sample
Timescale analysis
Optical depth

Acknowledgements: "SOCHIAS grant through ALMA/ CONICYT Project #31160034

OGLE-2014-BLG-0962:

Characterizing an M-dwarf Binary in the Galactic Bulge

Yutong Shan¹, Jennifer Yee², In-Gu Shin²

¹Harvard-Smithsonian Centre for Astrophysics

²Smithsonian Astrophysical Observatory

7 Detrending Spitzer Microlensing Light Curve using Pixel Level Decorrelation

OGLE-2015-BLG-0448

13.5 Spitzer Photometry obtained from PRF 14 fitting pipeline (Calchi grand 14.5 Novati et al. 2015) 15 15.5 **Systematics** -0.05 0 4 or 0.05 **Astrophysics?** 7180 7200 7240 HJD - 2450000 Poleski et al. (2016)

Pixel Level Decorrelation

Systematics (Pointing, Intra-pixel sensitivity variation) affects the fraction of the total flux measured by each pixel **The astrophysics does not!**

Lisa Dang Sagan Workshop, Caltech, Pasadena, August 2017

Detrending Spitzer Microlensing Light Curve using Pixel Level Decorrelation

OGLE-2015-BLG-0845

OGLE-2015-BLG-0448

250

Before (RMS = 5.56)

Systematics

After (RMS = 1.46) Corrected Light Curve 225 Astrophysical Model

Residuals

Lisa Dang Sagan Workshop, Caltech, Pasadena, August 2017

Modeling Planetary and Binary Microlensing Events

Yuki Hirao, Ph.D student, Osaka Univ., MOA collaboration

Saturn mass planet around an M dwarf

Massive planet around an M/K dwarf

 Real Time Modeling http://iral2.ess.sci.osaka-u.ac.jp/~moa/anomaly/2017/

Preliminary Work

Designing the Wide FOV NIR Camera for *PRIME* (Prime Focus Infrared Microlensing Experiment) Telescope

Four 4k×4k pixels H4RG-10 detectors

Developed at GSFC and Installed at SAAO

- Diameter: 1.8m (f/2.29)
- Image Area: 89.9mm × 89.9mm
- FOV: 1.25deg × 1.25deg = 1.56 deg²
- Operating Temperature: 80~100K

Conceptional Drawing of the Camera