Mapping the Near-Infrared Microlensing Event Rate towards the Galactic Bulge with UKIRT

Savannah Jacklin, Geoff Bryden, Yossi Shvartzvald, Sebastiano Calchi Novati

Following planetary microlensing with Subaru-AO

Lee, Chien-Hsiu / Subaru Telescope, NAOJ

- Why we need high resolution imaging?

- Recent Subaru-AO follow-up:
1. OGLE-2015-BLG-1395, 1649 in Sep. 2015
2. OGLE-2016-BLG-1067 in Jun. 2016

Ultra-wide-field Laser Tomographic Imager and MOS with AO for Transcendent Exploration by SUBARU Telescope

FoV comparison of NIR facilities in 2020s available at λ >2um

Fact sheet: https://www.naoj.org/Projects/newdev/ngao/20170316/materials/fact_sheet.pdf

Gravitational microlensing seen by Gaia Space Mission Katarzyna Kruszyńska, Łukasz Wyrzykowsk Warsaw University Astronomical Observatory kkruszynska@astrouw.edu.pl

Astrometric microlensing with the Gaia satellite Searching for Black Holes

Kris Rybicki Warsaw University Astronomical Observatory

2017 Sagan Summer Workshop, Pasadena

Microlensing is the only tool to observe (indirectly) and measure the mass of single stellar black holes !

A Deep Study of Stanek's Window as Precursor Science for the WFIRST Microlensing Field of Regard Sean Terry Advisor: David Bennett **Proper-motion selection** 1.5 -0.5 deg 14.5 -1.50.515.0 -2 15.5 ษัต พ 16.0 ℓ [deg] 16.5 17.0

Multi-epoch HST WFC3 observations of Stanek's field centered at (I,b) = [0.25, -2.15]

Field observed in 2010 (F555W, F814W, F110W, F160W) and 2012 (F814W).

Foreground blue plume branch (left) and evolved bulge stars (left)

2.5

17.5

18.0L 0.5

1.0

Cleaning and creating a pure bulge CMD/LF.

Bulge star centroid at $(\mu_{l},\mu_{b}) \cong [0 \text{ mas/yr}, 0 \text{ mas/yr}]$ and disk star centroid at $(\mu_{l},\mu_{b}) = [4 \text{ mas/yr}, 0 \text{ mas/yr}]$. PM cut at $\mu_{l} \cong -3.0 \text{ mas/yr}$.

PM-selection results in color-mag diagram and luminosity function with approximately 2% contamination from non-bulge objects.

Comparing completeness corrections results across different reduction routines (DOLPHOT, img2xym.F)

Further work: Deeper channels (F110W, F160W) and microlensing event rate estimate in this field.