
Direct Imaging of Exoplanets:
Achieving the High Contrast Needed

Jared R. Males
University of Arizona

2018 Sagan Exoplanet Summer Workshop



Jared Males – Sagan Workshop 2018 Direct Imaging 2

Achieving the High Contrast Needed

What sets the limit of an attempt to image an exoplanet?
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Imaging Basics

Pretend that this is the primary 
mirror of a 6.5 m telescope
  – Same size as JWST and Magellan

Assume that it is perfectly smooth

Assume that there are no aberrations
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Imaging Basics

Pretend that this is the primary 
mirror of a 6.5 m telescope
  – Same size as JWST and Magellan

Assume that it is perfectly smooth

Assume that there are no aberrations

Then the image formed by this telescope is:

In words: the modulus squared of the 
Fourier transform of the aperture function
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Imaging Basics

This is the Airy Pattern
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Imaging Basics

The diffraction limit (Sparrow Criterion)
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Reflected Light Contrast

● Rp = planet radius

● a = planet separation

● Ag = geometric albedo (function of wavelength)

● a = phase angle

● F = phase function
Montage of Rhea, by Emily Lakdawalla/Planetary Society
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Reflected Light Contrast

● Rp = 1 Earth radius

● A = 1 AU

● Ag = 0.25 (V band)

● a = 90 degrees

● F = 0.32
Earthrise,
Apollo 8

Earth contrast is 1.5 x 10-10
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Imaging An Earth-Hosting Star

At 10 pc:
G2V star ~ 5th mag
1 AU = 0.1 arcseconds
=> 6.3 l/D on a 6.5 m telescope
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Imaging An Earth-Hosting Star

At 10 pc:
G2V star ~ 5th mag
1 AU = 0.1 arcseconds
=> 6.3 l/D on a 6.5 m telescope

Image at left contains such an Earth, and 
shows a 1 hr exposure with photon noise.
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Imaging An Earth-Hosting Star

This is residual photon noise after perfect 
PSF subtraction.

Still no planet . . .
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The Coronagraph

We need a way to block the star’s light, 
without blocking the planet...

Note: none of these techniques work for our purposes.  Not even Olivier Guyon’s thumb.
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The Basic Lyot Coronagraph

Sivaramakrishnan et al, 2001 
http://lyot.org/background/coronagraphy.html

http://lyot.org/background/coronagraphy.html
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With a Coronagraph

With an ideal coronagraph, on our ideal 
6.5 m telescope, we could image an 
Earth in V band in just 1 hour.



Narrator: there are no ideal coronagraphs, and there are no ideal telescopes.
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Real Optics

A Fourier aberration:

Let’s assume that this cosine wave on the 
surface of the primary mirror has an 
amplitude of 1.0 picometers . . .
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An Aside About Picometers

From: https://www.webelements.com/silver/crystal_structure.html

The Silver atoms in the coating of our 
optics are 320 picometers in diameter!

That’s 0.3 nanometers.
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Real Optics

A Fourier aberration:

Cosine amplitude = 1.0 picometers
                                (or 1/320 Silver atoms) 
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Real Optics
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Real Optics
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Speckles – The Big Problem

A Fourier aberration in a pupil . . .

produces a pair of symmetric speckles . . .

a speckle is a copy of the image of the star (the PSF) . . .  

AND THEY LOOK JUST LIKE AN IMAGE OF A PLANET!
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A Real Mirror

This is the Magellan Clay 6.5 m primary 
mirror after polishing at U. Arizona.

Note the scale.

rms = 12.52 nm

In words: any aberration can be written 
as the superposition of Fourier modes 
(sines and cosines) of various spatial 
frequencies.
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A Real Mirror

The result: the post-coronagraph focal plane is covered 
                  with speckles, completely swamping the planet.
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Video Source

See the complete video at:
 

https://exoplanets.nasa.gov/exep/coronagraphvideo/
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Residual Speckles

The limit of the planet:star flux ratio that we can detect & characterize is set 
by the variance of intensity in the focal plane:

Pure photon noise:

Signal Noise
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Residual Speckles

The limit of the planet:star flux ratio that we can detect & characterize is set 
by the variance of intensity in the focal plane:
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Residual Speckle Variance

cf. Soummer et al., “Speckle Noise and Dynamic Range in Coronagraphic Images”, ApJ 669:642 (2007)
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Residual Speckle Variance

Photon Noise (Poisson  statistics)
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Residual Speckle Variance

Speckle Noise

Soummer et al., 2007
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Residual Speckle Variance

Speckle Noise

nasty

Consider two classes of speckles:
 
   – residual atmospheric speckles (short lived)
 
   – quasi-static, or instrumental, speckles (long lived)
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Residual Speckle Variance

Speckle lifetimes >> “lifetime” of photon noise
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Residual Speckles

Key Results:

– Speckles are an inevitable result of imaging with real optics
 

– Speckle noise will limit any coronagraphic direct imaging observation

– Speckle noise is fundamentally different from photon noise
    

       – It is spatially and temporally correlated
Bad:   Averages away slowly
Good: Can be post-processed away!
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What We Need To Achieve High Contrast

● On the ground, and in space:
– Large Telescopes
– A way to block starlight

● Coronagraphs
● In space: also Starshades

– Very good optics
– A way to deal with imperfections

● In our optics 
● On the ground: the atmosphere
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Dealing With Imperfections

● All optics are imperfect.
● The atmosphere exists.
● This all changes with time

– Spacecraft aren’t static (thermal changes, vibrations, etc.)
– Wind blows the atmosphere around

● Solution: real-time wavefront control
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Wavefront Control (a.k.a. Adaptive Optics)

● Wavefront Sensor
– Measure the aberrations

● Control System
– Calculates wavefront
– Sends commands

● Wavefront Corrector
(Deformable mirror)

– Removes the aberration
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rated
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Closed-Loop Control and Servo-Lag

● The WFS is after the DM
– Senses the residual wavefront (how much is not 

corrected)

● The WFS measures the wavefront at some time t.

● The control system take some time t to calculate 
and communicate

● Result: the correction applied by the DM is time t 
late.  

● But now the aberrations have changed 

 → This is called  “servo-lag”.
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Atmospheric Turbulence

● Simulation of typical atmospheric 
turbulence at Las Campanas 
Observatory

● 7 Layer model

● High layer winds up to 30 m/s

● 0.62” seeing

● Requirement on AO system: 

1kHz or faster
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Post-Coronagraph WFS&C

?

Consequence: in the focal plane, we can’t tell 
which Fourier aberration (of the two shown) is 
causing the speckles.

Solution: Probe and Iterate

Speckle Nulling (Borde’ 
2006)

Pairwise Probing & EFC 
(Give’on 2009)
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A Ground-Based Example

This is MagAO-X

A new “Extreme” AO system for Magellan Clay

2000 Actuators, 3.6 kHz control loop
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A Ground-Based Example
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MagAO-X
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MagAO-X
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MagAO-X

Woofer: Alpao DM97

Tweeter: BMC 2K

PWFS: OCAM 2K EMCCD

Pyramid

NCP DM: Alpao DM97

SDI: 2x Princeton Inst. 
1024 EMCCDs

LOWFS: Andor 
iXON 897

Sci/WFS B/S

K-mirror

ADC

f/11
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It’s Real
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Predictive Control

The aberrations are spatially and temporally 
correlated

So they are subject to prediction

Integrator: use only last measurement

Predictor: here using “Linear Prediction”

(buzzword if needed: Speech Recognition)

See Males & Guyon 2018
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Where Does This Leave Us?

● Adaptive Optics fed coronagraphs are now routinely used 
on ground-based telescopes.
– GPI, SPHERE, MagAO, LBTI, SCExAO
– Soon to be joined by MagAO-X

● Space coronagraphs are maturing rapidly
– WFIRST-CGI

● Even with sophisticated WFS&C, we will always have speckles.
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Further Reading

● Fundamental Theory:
– Jeremy Kasdin’s 2014 Sagan Workshop Lecture: 

https://www.youtube.com/watch?v=OSDBvxll0ic

● High Contrast AO Limits:
– Guyon 2005 (http://adsabs.harvard.edu/abs/2005ApJ...629..592G)

● Coronagraph Theory:
– Guyon 2006 (http://adsabs.harvard.edu/abs/2006ApJS..167...81G)

● FPWFS&C:
– Groff+ 2016 (http://adsabs.harvard.edu/abs/2016JATIS...2a1009G)

https://www.youtube.com/watch?v=OSDBvxll0ic
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