Fernando Alvarez

Transneptunian Automated Occultation Survey

- Located at San Pedro Martir Observatory.
- Three 1.3 m F/4 telescopes.
- CMOS Cameras.
- 20 Hz Imaging.
- 2.3 square degree field.

- ~10,000 stars per field.
- 3 Fields per night.
- Limit Magnitude R = 16.
- ~ 2.5 Tb data per night.

instituto de astronomía

unam

NRC

We'll be able to detect exoplanet transits?

2.00

2.00

Analyzing Spitzer follow-up data of K2 planets in preparation for the transition to TESS

HD106315 V = 8.97 mag PI: Mike Werner

David Berardo MIT Advisor: Ian Crossfield

Analyzing Spitzer follow-up data of K2 planets in preparation for the transition to TESS

550 hour proposal accepted for Spitzer follow up of TESS data (PI: Ian Crossfield)

A Validation Tool for TESS Exoplanet Candidates Steven Giacalone^{1,2} and Courtney D. Dressing¹

¹UC Berkeley Department of Astronomy

²steven_giacalone@berkeley.edu

Expected TESS Planet Yield

TESS is expected to detect thousands of exoplanets and even more eclipsing binaries.

Leveraging Follow-Up Observations

Unknown star properties and the presence of binary companions can be revealed using follow-up high-resolution imaging, spectroscopy, and photometry. KOI 2174 Keck/NIRC2 0.01"/pixel

Credit: Furlan et al. 2017

Purpose of Validation

Determine the best targets for mass measurement and atmospheric characterization.

Facilitate growth of statistical sample of confirmed exoplanets.

Star-Specific Priors

Planet occurrence and stellar multiplicity rates are dependent on the properties of the target star. Considering these properties allows more accurate validation.

WASP-128b: a short-period brown dwarf transiting a GOV host Vedad Hodžić • University of Birmingham

WASP-128b: a short-period brown dwarf transiting a GOV host Vedad Hodžić • University of Birmingham

Towards a Student-led TTV Research Program at the University of North Dakota --Sean McCloat¹--

UNIVERSITY OF NORTH DAKOTA

- Two 16" (0.4 m) SCTs
- FLI16803 & Apogee U9000
- 30' x 30' FOV, F/10
- UBVRI-RGB filters
- McCloat (2017) masters thesis first time observatory used to study exoplanets
- Observe recently discovered hot Jupiters, calibrate, model and attempt a transit timing variation analysis
- Calibration, modeling with IRAF, Python
- Successful in execution, justified keeping the observatory, feasible to engage in longer term TTV effort

1 - MS Space Studies, University of North Dakota

Towards a Student-led TTV Research Program at the University of North Dakota --Sean McCloat¹--

UNIVERSITY OF NORTH DAKOTA

Recent and future efforts:

- Observe transits every clear night, without thesis target restrictions
 - What transits are visible and with what precision? How frequently can we realistically make observations?
- Working with Dr. Carolina von Essen on other ground support exoplanet opportunities, fitting in

Sean McCloat spmccloat "at" gmail.com

Come talk to me!

Onward to the PhD!

- Pursuing PhD in Aerospace Sciences at UND, bringing exoplanets to the department and university
- Research interests
 - Can there be a "smoking gun" biomarker?
 - If not, what could some novel biomarkers be?
 - Are habitable systems easier to find than individual planets?

Light-curve Analyses on TRAPPIST-1 d & e for Mass Estimation

Mayuko MoriThe University of Tokyo / M1#transit #observation #TRAPPIST-1 #Habitability #MuSCAT

Wolf 503b: A 2R⊕ Planet Orbiting a Bright, Nearby K-dwarf

Merrin Peterson, Université de Montréal, supervised by Björn Benneke

- > Newly found this May in K2 Campaign 17
- One of few planets at its radius with a bright host, amenable to RV follow-up and transit spectroscopy with JWST

System Facts:

Distance = 44.58 pc $M_* = 0.688^{+0.023}_{-0.016} \text{ M}_{\odot}$ $R_* = 0.690^{+0.023}_{-0.024} \text{ R}_{\odot}$ $R_p = 2.030^{+0.076}_{-0.073} 08 \text{ R}_{\oplus}$ $P = 6.00118^{+0.00008}_{-0.00011} \text{ days}$ $a = 0.057 \pm 0.002 \text{ AU}$

Candidate Validation

Archival Sky Survey Images of Wolf 503's 2018 location

- Adaptive Optics limits possible companion separation to 4.4 AU, eliminating ~90% of binary or multiple star systems
- Flat-bottomed, diluted lightcurve of consistent depth: indicates a transiting planet, or a highly specific multiple star system
- Template and RV curve started at HIRES June 14

Background source
contamination eliminated to 19
mag using archival images

A Near-Infrared Search for Transiting Exoplanets around Brown Dwarfs with the 1.8-m Perkins Telescope

Patrick C. Tamburo & Philip S. Muirhead

Precovery of TESS single transits with KELT

Xinyu Yao (Lehigh University)

Recovery rate distributions across Period vs. planetary radius space (left) and transit duration vs. transit depth space (right) for the KELT North light curves.

Successfully recovered light curves

P=250.2 d, τ=17.9 h, δ=7 mmag

P=35.3 d, τ=19.8 h, δ=3 mmag

