FRONTIER DEVELOPMENT LAB | 2018

Machine Learning for Exoplanet research

Lessons and results from NASA Frontier Development Lab

Dr. Daniel Angerhausen CSH Fellow Bern University

NASA FDL Intel AI IEM LOCALED HANTH KX Google Cloud KBRWYLE

Who am I?

A mercury sized planet transiting a sun-like star

playground.tensorflow.org

Tinker With a **Neural Network** Right Here in Your Browser. Don't Worry, You Can't Break It. We Promise.

"FDL is an applied AI research accelerator established to maximize new AI technologies and capacities emerging in academia and the private sector and apply them to challenges in the space sciences."

KBRWyle

FRONTIER DEVELOPMENT LAB | 2018

The 2018 Challenges

Defined by NASA and carefully curated group of space scientists, humanitarians and technologists in a "Big Think"

KBRWyle

KX IBM.

#AlforGOOD

FRONTIER DEVELOPMENT LAB | 2018

The 2019 Challenges

KBRWyle

IBM.

The Recipe

Example: FDL 2018 Astrobiology Team

Michael Himes Planetary Scientist

Molly O'Beirne Planetary Scientist

Shawn Domagal-Goldman Planetary Mentor

Giada Arnev Planetary Mentor

Frank Soboczenski **Computer Scientist**

Simone Zorzan Computer Scientist

Atilim Gunes Baydin AI Mentor

Daniel Angerhausen **Planetary Mentor**

Participants + Mentors + Silicon Valley

And then lock them up at the SETI Institute for 8 weeks...

...the Silicon Valley way

FDL

XPRIZE Google Cloud

KK IEM KBRWyle

FRONTIER DEVELOPMENT LAB | 2018

Can we use Al techniques for localization on the Moon?

Andrew Chung, Philippe Ludivig, Ben Wu, Ross Potter SPACE RESOURCES

The Problem: Where are you?

The Problem: Where are you?

The Problem

Reprojected View

True Orbital View

The Breakthrough

Increase the efficacy and yield of exoplanet transit detections with deep learning

Michele Sasdelli, Megan Ansdell, Hugh Osborn, Yani Ionnou

The Problem

Where are the planets and are they real?

alester i norrella del ser dell'arrelle alester i la serie a serie de la serie de la serie de la serie de la s					
					an a
ine time and the straight straight with the second straight and the second straight	the straight of a second straight in the second	THE OF THE OWNER OF THE PARTY OF THE		and the second product of the second	Bid man war an in the set
			antis antis state that a state		
and a second	and a tradition of the second set of the Philippe Constant and the second second second second second second s			inen en	
		an a	a graden kom g at state an andre a	and constraints are stable	a source to respecte
	and the second distance in a second second				The grant is many a second
. Na amang mang sa kang sa kan Kang sa kang sa			Reger Tala dal berbit il minane unde (in Mine Anisi (Makani) (Mine Anisi (Mine Anisi (Mine)
وروابها وأرواره يريد والمناب مناع برباه فأراب ويعفرنه برها الماحر فالخبط			here we will state the state of the		lates a life in the all a leaded

(intel)

kx

IEM.

A

KBRWyle

SELI

Kepler/TESS Pipelines

XPRIZE

Google Cloud

KBRWyle

The Data: False Positives

Eclipsing Binaries (EBs)

Background Eclipsing Binaries (BEBs)

Stellar Variability / Instrumental Noise

FDL

Add domain knowledge

Improved model

kx IEM.

KBRWyle

Details: Ansdell et al. 2018, Osborn et al. 2019

Challenge 1: Understanding what is universally possible for life

Aditya Chopra, Aaron Bell, William Fawcett, Rodd Talebi

Challenge 2: From biohints to confirmed evidence of life

Michael Himes, Frank Soboczenski, Simone Zorzan, Molly O'Beirne

ASTROBIOLOGY

KBRWyle

The Problem

N=1

...not exactly BigData

Team 1 ~200.000 ATMOSpheres Calculated

Team 2 **3 Million**

Observations of spectra simulated

Team 2 **3 Million**

Observations of spectra simulated

kx

The breakthrough

Datasets and software soon available:

NASA Exoplanet Archive

Google cloud/Kaggle

NASA EXOPLANET ARCHIVE

About FDL/PyATMOS PyATMOS Dataset

r Development Labs (FDL) PyATMOS Dataset

Download All Checked Model

Download This Model

Summary of Atmospheric Models

		🗄 🖪 🗞 🖒	Ø 📍		13)	1 of 125 🕨 🊺 (1 - 1.000 of 124.3)	I4 4		
	1	Temperature (K)	Pressure (bar)	Input O2 Concentration (fractional)	Input H2O Concentration (fractional)	Input H2 Concentration (fractional)	Input CO2 Concentration (fractional)	Input CH4 Concentration (fractional)	
		> 280							8
3304	0	320.29000000	1.06290000	0.22000000	0.04000000	0.05000000	0.03000000	0.01000000	0 07
320	1	320.26000000	1.11830000	0.16000000	0.01230000	0.00000008	0.01000000	0.03000000	i de
310 .	B	320.21000000	1.10360000	0.21000000	0.45000000	0.00000008	0.01000000	0.02000000	
	ers.	313.87000000	1.06850000	0.14000000	0.15000000	0.00000009	0.04000000	0.00000163	94
300-	Ē	322.48000000	1.11770000	0.20000000	0.40000000	0.0000008	0.02000000	0.02000000	100
290-	Ĕ	319.51000000	1.09860000	0.35000000	0.10000000	0.0000008	0.01000000	0.01500000	🔲 e3
1.		288.58000000	1.02940000	0.14000000	0.05000000	0.00000008	0.00040000	0.00000163	18
		322.82000000	1.13550000	0.25000000	0.04000000	0.05000000	0.02000000	0.03000000	I be

Preview of Selected Model

【◀ ◀ 1 of 1 ▶ ▶】 (1 - 502 of 101)					1 of 1 🕨 🍋 (1 - 101 of 1	.01)	9 E 🖬 🗞 🍾	\$\$⊡ @5	
Lay	yer Number	Pressure (bar)	Altitude (km)	Temperature (K)	Is Layer Convective?	H2O Fraction	03 Fraction		Model Preview
7									Hodel Heview
	1	7.69990E-06	6.72470E+01	8.98150E+01	0	1.16340E-02	6.42840E-09	1	o 👟
	2	9.31000E-06	6.67220E+01	1.01380E+02	0	4.65610E-03	6.37940E-09		⇒ 300-
	3	1.12410E-05	6.61480E+01	1.09380E+02	0	4.00000E-06	6.31500E-09		300
1	4	1.35520E-05	6.55440E+01	1.14480E+02	0	4.00000E-06	6.25970E-09		e 200-
	5	1.63150E-05	6.49230E+01	1.17840E+02	0	4.00000E-06	6.16900E-09		Ĕ 100
	6	1.96130E-05	6.42920E+01	1.19700E+02	0	4.00000E-06	6.07480E-09		P 100
	7	2.35440E-05	6.36590E+01	1.20580E+02	0	4.00000E-06	5.99650E-09		0 20 40 60
1	8	2.82230E-05	6.30280E+01	1.21010E+02	0	4.00000E-06	5.93940E-09		Altitude (km)
n		2.228205.05	6 34050E - 04	4.040505100		4.000005.06	E 00500E 00		

Spectrum

квяжуlе

KX IEM.

First application of (Emsembles of Bayesian)

Neural Networks in Exoplanet Spectral Retrieval

Soboczenski+ 2018 NIPS, Cobb+ 2019 AJ, Himes+ 2019 in prep

Can we replace "traditional" bayesian sampling with neural networks?

Yes, but....

XPRIZE Google Cloud

KX IEM. KBRWyle

Comparison

INARA	Seconds	12 (rocky planets)
HELA	Seconds	3 (1 specific Hot Jupiter)
ExoGAN	Minutes	4 (Hot Jupiters)
Traditional	Hours to days	User-specified
Method	Time	# of Molecules Retrieved

Comparison

WFC3 spectrum of WASP-12b

Cobb+ 2019 (plan-net, BNN), Marquez-Neila+ 2018 (HELA, RF)

	T(K)	$\log X_{\mathrm{H_2O}}$	$\log X_{ m HCN}$	$\log X_{\rm NH_3}$	^κ 0	Mean
plan-net R^2	0.770	0.623	0.487	0.721	0.750	0.673
Ens. 5 plan-net R^2	0.770	0.629	0.491	0.723	0.751	0.673
Our Ran. Forest R^2	0.746	0.608	0.466	0.700	0.736	0.651
Ran. Forest ^a R^2	0.746	0.608	0.467	0.700	0.737	0.652

	T(K)	$\log X_{\rm H_2O}$	$\log X_{\rm HCN}$	$\log X_{\rm NH_3}$	κ_0
Kreidberg et al. (2015)	1371^{+466}_{-343}	$-2.7^{+1.0}_{-1.1}$	-	-	-
Márquez-Neila et al. (2018) nested sampling	1105^{+545}_{-287}	$-3.0^{+2.0}_{-1.9}$	$-8.5^{+3.8}_{-2.9}$	$-8.4^{+3.1}_{-2.9}$	-2.8 ± 0.9
Our Rand. Forest	937^{+410}_{-146}	$-2.835^{+1.51}_{-3.37}$	$-7.484^{+3.43}_{-2.89}$	$-9.202^{+4.12}_{-2.74}$	$-2.281^{+1.09}_{-1.57}$
ENS. 5 PLAN-NET	1142 ± 412	-2.781 ± 0.429	-8.210 ± 12.7	-9.605 ± 6.7	-2.601 ± 1.23

SE

S1

Conclusion

- -You are already doing it
- -Data is the driver
- -AI/ML a toolbox, not one hammer
- DL new tool with some applications

-ask an Expert, collaborate

When If we find the first signs of life in space:

... machine learning was used

... within a public private partnership

Can we use data-driven Al techniques to "revive" an instrument?

Richard Galvez, Rajat Thomas, Paul Wright, Alexander Szenicer

KX IEM.

квяжуle

The Problem

The Problem

The Breakthrough

Augmented ResNet

The Breakthrough

Augmented ResNet

