

School of Earth and Space Exploration

ExoPlex Mass-Radius Code

NEUSS

Cayman Unterborn School of Earth and Space Exploration Arizona State University Sagan Summer Workshop 7-16-2019

Jargon for astronomers: Core: Fe/Ni/X sphere in middle of rocky planets Mantle: The rocky part Metal: Not everything $Z > Z_{He}$ CMB: Core mantle boundary

What makes a habitable planet? (An Exogeoscientist's View)

But what can we actually feasibly observe, even indirectly?

Venus-likeDelivery of volatiles

Exoplanet Observables

Atmosphere orbits

2017

Gillon et al.,

as we know it The Habitable^{*}Planet

Composition

Structure

Dynamics

History

as we know it The Habitable Planet

Composition

Structure

Dynamics

History

SERC

as we know it The Habitable^{*}Planet

Composition

Structure

Figure 4. Schematic diagram of the global carbon cycle after Foley [2015].

Foley & Driscoll 2016

as we know it The Habitable Planet

Basic EARTH Stats: 1 Earth Radius 1 Earth Mass **1** Earth Average Density (5.515 g/cc)

lass Radius Diagram

How do we "measure" composition?

b)

N Stor

0.6

0.2

0.3

0.4

0.7

0.8

0.1

0.9

0.1

0.2

0.3

0.4

0.9

0.8

0.7

0.6

0.5

0.4

0.9

0.3

0.2

0.1

GJ 581d: Rogers & Seager, 2009

Iron

0.5

0.6

0.7

0.8

Mass-radius grids

Grids for Rock (MgSiO₃) Water Iron 0.1 -100 Earth masses

Mass-radius grids

Mass-radius grids

curves of constant CMF (from 0 to 1 with stepsize 0.1)

Simple compositional grids not great for individual planet characterization

20

20% Cor

Compositional Diversity

Mass-Radius-Composition

Solar Composition, 1 Earth Mass

- Planet Interiors are not simple!
- One input composition but not
- all one mineral
- Why not let thermodynamics decide the mineralogical hosts of elements?
- 1. Dorn et al. 2015 (Bayesian)
- 2. Unterborn et al., 2018 (Forward)
- 3. Hinkel & Unterborn, 2018
- (stellar compositions)4. Unterborn & Panero, 2019
 - (comparisons to grids, outline phase space)

ExoPlex

 $\frac{\text{Earth}}{\text{Mg/Si} = 1.1}$ Fe/Mg = 0.9 AI/Mg = 0.1 Ca/Mg = 0.07

 $\frac{\text{Random Star}}{\text{Mg/Si} = 1.5}$ Fe/Mg = 0.5Al/Mg = 0.04Ca/Mg = 0.04

Hinkel & Unterborn, 2018 ApJ

ExoPlex

Solar Composition, 1 Earth Mass

- Why not let thermodynamics decide the mineralogical hosts of elements?
- Use PerPlex to solve for stable mineralogy and thermodynamic properties

Derives P, T, ρ, mineralogy, & core size for planet of given mass or radius as fxn of depth

ExoPlex Grids!

• >100 Gb of P, T, ρ , $\overline{C_P}$, α Valid over 2σ of stellar \bullet abundances $0.5 \le \text{Si/Mg} \le 2$ $0.02 \le Ca/Mg \le 0.1$ $0.04 \leq AI/Mg \leq$ $FeO \le 0.20$ $1400 \leq Mantle T_P \leq 2000 K$ Mass \leq 8 Earth masses H_2O phase diagram (water + ices) Core light elements (S, O, Si)

Solar Composition, 1 Earth Mass

ExoPlex Grids!

 >100 Gb of P, T, ρ, C_P, α
Valid over 2σ of stellar abundances

Public Release Q4 2019

$$\label{eq:FeO} \begin{split} & FeO \leq 0.20 \\ & 1400 \leq Mantle \ T_P \leq 2000 \ K \\ & Mass \leq 8 \ Earth \ masses \\ & H_2O \ phase \ diagram \\ & (water + ices) \\ & Core \ light \ elements \ (S, O, Si) \end{split}$$

Solar Composition, 1 Earth Mass

ExoPlex

Mantle pressure, mantle temperature, core pressure Unterborn & Panero, 2019

Hands-on Session: Characterizing TRAPPIST-1

TRAPPIST-1 System

Illustration

Hands-on Session: Characterizing TRAPPIST-1

Which composition(s) best-fit each of the T1 planets?

Conclusions

- Mass and Radius provide clue to planetary interior composition
- M-R may provide key insights into interpretation of atmospheric composition, geodynamic state, mineralogy, others?
- Most M-R grids only great for broad studies, individual planet systems require more precise models (e.g. ExoPlex)
 - TRAPPIST-1 among best measured rocky plan ets but what compositions are their measured M-R consistent with?