The **complexity** of exoplanet data can be quantified, and could be used to help search for **life in the universe**

Computational Mechanics and Epsilon Machine Reconstruction: A New Approach to Exoplanet Analysis and Biosignatures

Stuart J. Bartlett^{1,2}, Lana Sinapayen^{3,2}, Vijay Natraj^{4,1}, Jonathan Jiang^{4,1}, and Yuk L. Yung^{1,4} Contact email: sjb@gps.caltech.edu

¹California Institute of Technology, Pasadena, United States;

²Earth-Life Science Institute, Tokyo, Japan

³Sony Computer Science Laboratories, Tokyo, Japan

⁴NASA Jet Propulsion Laboratory, Pasadena, United States

The DSCOVR Mission

- Earth is being used as a proxy exoplanet to develop life detection techniques
- DSCOVR satellite is situated between Earth and the Sun (1st Lagrangian point)
- EPIC camera measures light reflectance in 10 wavelength bands
- EPIC images were coarse-grained to 1 pixel to emulate a distant exoplanet

Conceptual Approach

Initial Results

Computational Mechanics and Epsilon Machines

References:

- Brodu, Nicolas. "Reconstruction of epsilon-machines in predictive frameworks and decisional states." Advances in Complex Systems 14.05 (2011): 761–794.
- ← Crutchfield, James P. "Between order and chaos." Nature Physics 8.1 (2012): 17.
- Jiang, Jonathan H., et al. "Using deep space climate observatory measurements to study the Earth as an exoplanet." The Astronomical Journal 156.1 (2018): 26.
- Sinapayen, Lana, and Takashi Ikegami. "Online fitting of computational cost to environmental complexity: Predictive coding with the ε-network." Artificial Life Conference Proceedings 14. MIT Press, 2017.