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Questions Addressed in This Talk

* What are transiting planets, how are they detected, and
what planetary characteristics can be determined?

* What follow-up data are needed to determine which
candidate transiting planets are real planets?

* How do astronomers determine the compositions of
planets and what have we learned so far?

 What are the three-dimensional orientations of
planetary systems and how stable are they?



Streamlined Outline

1. Transiting planets
2. Follow-up observations
3. Planetary compositions

4. System orientations



Part 1. Transiting Planets
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Image credit: NASA/SDO, Scientific American



We detect transiting planets by monitoring the
brightness of their host stars and looking for
periodic decreases in brightness.
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Transit Light Curves Reveal Planet Properties

Figure 2 from Transits & Occultations by Winn (2010)
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Most Planets Do Not Transit
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Figure 3 from Transits & Occultations by Winn (2010)



Space-Based Surveys for
Transiting Planets
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Exoplanet Populations

Non-Kepler and Kepler Discoveries
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NASA’s TESS Mission is conducting an all-sky search
for transiting planets orbiting bright nearby stars

TESS launching into space on April 18,
2018. (Credit: Michael Deep /
SpaceFlight Insider)

TESS Spacecraft (Credit: NASA)
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TESS is finding excellent targets for future study

* Probe interior structures of exoplanets
* Determine atmospheric composition

* Investigate the demographics of planetary
populations

Important Caveat: Not all transit-like
events are caused by transiting planets



Not All Candidate Signals will be Planets

Image Credit: NASA



Not All Candidate Signals will be Planets

Brown dwarf or
low-mass star
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Steven Giacalone
(UCB 4t year grad)
is building tools to vet
TESS planet candidates

o
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_ TRICERATOPS pipeline described in Giacalone & Dressing
Image Credit: NASA (under review at AAS journals, arXiv:2002.00691)



https://ui.adsabs.harvard.edu/abs/2020arXiv200200691G/abstract

Part 2. Follow-up Observations



Follow-up Observations Are Essential
For Identifying False Positives

NASA Level 1 Science Planets smaller than 4 R with
Requirement measured masses



TFOP (TESS Follow-up Observing Program)
Systematically Vets TESS Planet Candidates

TESS Objects of Interest (TOls)

False positive screening, blend & stellar characterization

Seeing-Limited Phot. Recon Spectroscop High-Res Imagin
(5G3)

Resolve close

Graphic from https://tess.mit.edu/followup/ Image credits (clockwise from top left): KELT Survey,
NOAO/AURA/NSF, Buchhave et al. (2011), Berta et al. (2012), Malavolta et al. (2016).


https://tess.mit.edu/followup/

TFOP Subgroup 1: Seeing-limited Imaging

* Produce higher-resolution map of the scene
* Monitor brightness of candidate host star
* |dentify nearby eclipsing binaries

* Determine transit times to improve ephemerides
(when transits occur) and measure transit timing
variations (whether transits occur early or late)

For more details about TFOP, see https://tess.mit.edu/followup/



https://tess.mit.edu/followup/

TFOP Subgroup 2: Reconnaissance Spectroscopy

* Determine stellar parameters (T, log g, [Fe/H])
* Improve estimates of planetary properties
* |dentify spectroscopic binaries

* Constrain stellar rotation rates to screen targets
for future precise RV spectroscopy

For more details about TFOP, see https://tess.mit.edu/followup/



https://tess.mit.edu/followup/

TFOP Subgroup 3: High-Resolution Imaging

* Map the scene at even higher resolution
* Detect nearby stellar companions
* Correct estimates of planetary properties

* Assess whether candidate stellar companions are
physically bound to the target star

e Techniques include adaptive optics imaging,
speckle imaging, and lucky imaging

For more details about TFOP, see https://tess.mit.edu/followup/



https://tess.mit.edu/followup/

Follow-up observations can help distinguish
between TESS planets & false positives
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Keck/TESS ToO Program (Pl: Beichman) Figure by D. Ciardi
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Determining the Multiplicity of Kepler Target Stars to
Revise Estimates of the Frequency of Earth-like Planets
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TFOP Subgroup 5: Space-Based Photometry

* Obtain high-cadence photometry of the target star
* Improve estimates of planetary properties

* Determine transit times to improve ephemerides
and measure transit timing variations

 Facilities include HST, Spitzer, CHEOPS, and JWST

For more details about TFOP, see https://tess.mit.edu/followup/



https://tess.mit.edu/followup/

TFOP Subgroup 4: Precise RV Spectroscopy

* Obtain highly precise radial velocities of the
target star

* Measure planet masses

e Constrain planet densities

For more details about TFOP, see https://tess.mit.edu/followup/



https://tess.mit.edu/followup/

Part 3. Planetary Compositions



Our Solar System has Two Types of Planets

&

large, gas &

‘ ice-rich giant
planets far

Small, terrestrial HOINRUERTTY

(rocky) planets
close to the Sun

Not to scale é



Planets 2-4x Larger than Earth are Common

Number of Planets per Star

Planet size (relative to Earth)

Howard 2013, Science, 340, 572



Planets 2-4x Larger than Earth are Common
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There is a Gap in the Planet Radius Distribution
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Are small
planets rocky?

Or volatile-rich?



We need to measure
densities to find out!

Density = Mass/Volume so we need planet masses and planet radii

Use the radial velocity method!

Use the transit method!



The Terrestrial Planets of the Solar System
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The Interiors of Terrestrial Worlds

Solid inner core
Liquid outer core

B Crust
B Mantle
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MERCURY VENUS

Credit: NASA



The Interiors of Large Moons

Enceladus
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Titan Triton
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Credit: NASA



Cross-Section of a “Generic” Exoplanet

gas layer

iIce & ocean layers
mantle

of low density materials

Dorn et al. (2018)



Modeling Planetary Interiors

Dorn (2018)

dm(r)

dP(r) _ Gm(r)p(r)
dr dr 72

Mass Conservation Hydrostatic Equilibrium

= 47tr?p(r)

p(r) = f(P(r),T(r))

Equation of State

Need to know the temperature gradient T(r)


https://ui.adsabs.harvard.edu/abs/2018haex.bookE..66D/abstract

Few Small Planets Have Precise

Density Estimates
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Few Small Planets Have Precise Density Estimates
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Credits: ESA, Alfred Vidal-Madjar, NASA



Most Kepler planet candidates orbit stars
that are too faint for RV follow-up
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Data from the NASA Exoplanet Archive



Most Kepler planet candidates orbit stars
that are too faint for RV follow-up
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Data from the NASA Exoplanet Archive



TESS planets are ideal targets for
RV mass measurement
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The Exoplanet Census is
Substantially Incomplete
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WEFIRST Will Dramatically Expand the
Exoplanet Census
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Part 4. System Orientations



The Rossiter-McLaughlin Effect:
RV Observations During Transit Probe Orbital Inclination

S

Gaudi & Winn (2007)



The Rossiter-McLaughlin Effect:
RV Observations During Transit Probe Orbital Inclination

Surface
Brightness

Radial
Velocity

Line
Profile

_— -_ _—
Veldcity | Veldcity Veldcity
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The Rossiter-McLaughlin Effect:
RV Observations During Transit Probe Orbital Inclination

N A2 O
©C ©O O O

|
N
o

I
> N N A O
O 0O O O O O
!
N
o

Rodiol Velocity [m s™']

Rodiol Velocity [m s™]

‘w

3
-
()
>

K=}
3]
o
(4 4

|
ol
o
|
>
o

| | I
D 2N N A2 O
O 0O O O O O O

Gaudi & Winn (2007)



Wrapping Up: Topics Listed in Outline

Transiting planets
Follow-up observations
Planetary compositions

System orientations



Summary

* Transiting planets are planets that cross in front of their stars.

— Periodic decreases in stellar brightness reveal transiting planets.
— Transit light curves reveal the relative size of the planet relative to the
host star and the orbital period of the planet.
* Follow-up data can be used to determine which candidate
transiting planets are real planets.
— Seeing-limited imaging can screen out nearby eclipsing binaries.

— Reconnaissance spectroscopy can reveal spectroscopic binaries and
improve stellar (and planetary) parameters.

— High-resolution imaging reveals nearby stellar companions that can
dilute the depth of stellar eclipsing binaries and transiting planets.

— Space-based imaging can refine transit ephemerides and reveal transit
timing variations.

— Precise RVs can determine planet masses, thereby constraining planet
compositions.



Summary

* Planetary compositions can be estimated by measuring

both radius and mass.
— Radii can be estimated from transit light curves.

— Masses can be estimated from radial velocity observations and/or transit
timing variations.

— Small planets tend to have higher densities consistent with Earth-like
compositions while larger planets require more volatiles.

— Most planets with compositional constraints are either much hotter or
much more massive than the Earth.

* Planetary systems have a variety of three-dimensional
orientations.

— Some planets have orbits aligned with the spin axis of their host
star.

— Other planets orbit in the opposite direction.



A Selection of Useful References (Part 1 of 2)

* Previous Sagan Summer Workshops

— Did I Really Just Find an Exoplanet? (2018;
https://nexsci.caltech.edu/workshop/2018)

— Is There a Planet in My Data? Statistical Approaches to Finding and
Characterizing Planets in Astronomical Data (2016;
https://nexsci.caltech.edu/workshop/2016/)

— Working with Exoplanet Light Curves (2012;
https://nexsci.caltech.edu/workshop/2012/)

* Textbook Chapters

— Transits & Occultations by Winn (2010, arXiv:1001.2010, from Exoplanets
ed:Seager)

— Handbook of Exoplanets (2018, ed: Deeg & Belmonte; check your
university library for free electronic access)



https://nexsci.caltech.edu/workshop/2018
https://nexsci.caltech.edu/workshop/2016/
https://nexsci.caltech.edu/workshop/2012/
https://ui.adsabs.harvard.edu/abs/2010arXiv1001.2010W/abstract
https://ui.adsabs.harvard.edu/abs/2018haex.bookE....D/abstract

A Selection of Useful References (Part 2 of 2)

* Journal Articles & Reports
— The Occurrence and Architecture of Exoplanetary Systems (Winn &
Fabrycky 2015, Annual Review of Astronomy & Astrophysics, 53, 409)
— Statistical Trends in the Obliquity Distribution of Exoplanet Systems
(Munoz & Perets 2018, AJ, 156, 253)
— The Compositional Diversity of Low-Mass Exoplanets (Jontof-Hutter
2019, Annual Review of Earth and Planetary Sciences 47, 141)
— Resources Needed for Planetary Confirmation and Characterization
(Ciardi et al. 2018, arXiv:1810.08689)
— The Kepler Follow-up Observation Program. |. A Catalog of
Companions to Kepler Stars from High-Resolution Imaging (Furlan et
al. 2017, AJ, 153, 71)
* Websites
— Kepler & K2 missions
(https://www.nasa.gov/mission_pages/kepler/overview/index.html)
— TESS mission (https://www.nasa.gov/tess-transiting-exoplanet-
survey-satellite)



https://ui.adsabs.harvard.edu/abs/2015ARA%26A..53..409W/abstract
https://ui.adsabs.harvard.edu/abs/2018AJ....156..253M/abstract
https://ui.adsabs.harvard.edu/abs/2019AREPS..47..141J/abstract
https://exoplanets.nasa.gov/exep/exopag/sag/
https://ui.adsabs.harvard.edu/abs/2017AJ....153...71F/abstract
https://www.nasa.gov/mission_pages/kepler/overview/index.html
https://www.nasa.gov/tess-transiting-exoplanet-survey-satellite

