Standard Methods for Measuring RVs and their Uncertainties

Sharon Xuesong Wang Carnegie Observatories -> Tsinghua University @sharonxuesong

2020 Sagan Summer Workshop

Outline

- What are we measuring when we measure RVs?
- Standard methods for measuring RVs.
- Origin and mitigation of "measurement errors".
- Non-standard methods for measuring RVs.

wavelength

What do we actually measure?

- 1. Spectra at different epochs
- 2. Wavelengths for spectrum at each epoch
- 3. Barycentric correction
- 4. Doppler shift between each spectrum w.r.t. reference

Ref: Sam Halverson's talk; also see Arpita Roy's talk @ 2018 Sagan

What do we actually measure?

- 1. Spectra at different epochs
- 2. Wavelengths for spectrum at each epoch
- 3. Barycentric correction
- 4. Doppler shift between each spectrum w.r.t. reference

Ref: Sam Halverson's talk; also see Arpita Roy's talk @ 2018 Sagan

Standard methods for measuring RVs.

Cross Correlation Function (CCF)

used for stabilized spectrographs. (or getting less-precise RVs)

Baranne et al. 1996

• Forward Modeling

used for both stabilized spectrographs and absorption cell calibration.

Butler et al. 1996

CCF

fit a gaussian to find RV plus activity indicators

Flavors of Masks

- Customized binary masks
- Cosine-shaped or other shaped masks
- Full stellar spectrum / template

Baranne et al. 1996; Pepe et al. 2002; ESPRESSO Pipeline User Manual; Petersburg et al. 2020

Forward Modeling

Stellar Template

They are typically empirically derived.

Deconvolution

Butler et al .1996

- Shift and stack many frames Anglada-Escudé & Butler 2012
- Shift, stack, morph

Petersburg et al. 2020

What can go wrong?

Origin and mitigation of "measurement errors".

Fun Fact #1

How precise do you think we could measure the **absolute RV** of a star w.r.t. our solar system?

- A. As precise as our relative RV measurement (i.e. < 1 m/s).
- B. < 10 m/s
- C. < 100 m/s
- D. < 1000 m/s

What can go wrong?

Origin and mitigation of "measurement errors".

Errors in Mearing RVs

Any change in the observed stellar spectrum that is **not caused by the Doppler shift** due to planets.

Errors in Mearing RVs

All things equal, under idealized situations*,

CCF = Forward Modeling

*Same photon noise, same template, eliminating contamination completely, no stellar variation *With proper and reliable **continuum normalization**

Errors in Mearing RVs

Error in the mask/template

e.g. a missing line, wrong shapes of some lines

Error in the mask/template

e.g. a missing line, wrong shapes of some lines

Constant RV offset

Error in the mask/template

e.g. a missing line, wrong shapes of some lines

Error occurs when template defects interact with **non-Doppler changes** in the observed spectra!

Errors in Mearing RVs

Solar Contamination

Telluric Emission

Telluric Absorption

Contamination

"Root" Solution

Solar Contamination avoid moon; sky fiber

Telluric Emission dark site; sky fiber

Telluric Absorption going to space [!]

Contamination

Solar Contamination

Roy et al. 2020

Solar Contamination

Telluric Absorption

Ref: Cullen Blake's talk.

Wang, Latouf, et al. 2020 in prep.

Telluric Absorption

Wang, Latouf, et al. 2020 in prep.

Telluric Absorption

No photon errors.

Wang, Latouf, et al. 2020 in prep.

Fun Fact # 2

When we know the telluric absorption lines perfectly, dividing them out then performing CCF does not eliminate the errors completely. Why?

Fun Fact # 2

When we know the telluric absorption lines perfectly, dividing them out then performing CCF does not eliminate the errors completely. Why?

Convolution does not distribute over multiplication!

Errors in Mearing RVs

Stellar Variation

Ref: Talks by Heather Cegla, Annelies Mortier, Jennifer Burt

Non-standard methods for measuring RVs.

"Grand Solution" Style (Jeff Valenti)

- Jeff Valenti and BJ Fulton on HIRES data
- Gao et al. 2016 for CSHELL and iSHELL on IRTF
- wobble, Bedell et al. 2019

Gaussian Process

- PSOAP, Czekala et al. 2017
- Rajpaul et al. 2020

Others

- Machine learning (Davis+2017), neural network?
- Other statistical/numerical method teasing out **only** Doppler shifts

No prior knowledge required.

wobble, Bedell et al. 2019

Pair-wise extraction of RVs with GP regression

- RVs from each pair of spectral orders within a pair of observations
- Determine the "contaminated" orders post extraction
- Rejecting "contaminated" orders

Ref: Vinesh M. Rajpaul's talk on GP; Rajpaul et al. 2020

Errors in Mearing RVs

Thank you & questions welcome

Sharon Xuesong Wang

wang.xuesong.sharon@gmail.com bit.ly/sxwang @sharonxuesong