

Fundamentals of Instrumentation

Andreas Quirrenbach

Landessternwarte Zentrum für Astronomie der Universität Heidelberg

Cross-Dispersed Echelle Spectrographs

Layout of a Grating Spectrograph

Andreas Quirrenbach

Fundamentals of Instrumentation

Sagan WS 2020

- 3 -

Unblazed Reflection Grating with Groove Width *b* and Separation σ

Andreas Quirrenbach

Fundamentals of Instrumentation

Sagan WS 2020

- 4 -

- Grating equation: $m\lambda = \sigma(\sin\beta + \sin\alpha)$
 - m is the diffraction order
- Angular dispersion: $\frac{d\beta}{d\lambda} = \frac{m}{\sigma \cos \beta} = \frac{\sin \beta + \sin \alpha}{\lambda \cos \beta}$
 - "Spread" of spectrum on detector
- Resolution: $R = \frac{\lambda}{\Delta\lambda} = \frac{W(\sin\beta + \sin\alpha)}{\varphi D} = \frac{\lambda m W}{\varphi D\sigma} = \frac{\lambda m N}{\varphi D}$
 - Ability to separate adjacent lines
 - W length of grating
 - φ angular slit (or fiber) size on sky
 - *D* telescope diameter
 - N total number of grating lines _

Andreas Quirrenbach

Fundamentals of Instrumentation

Sagan WS 2020

 $\lambda + \Delta \lambda$

A Small Section of CARMENES Spectra

cormenes

RV Accuracy for Stars with Different Rotation Rates

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

The Quest for High Spectral Resolution

- Best RV precision for $R \gtrsim 80,000$
- Resolution: $R = \frac{W(\sin \beta + \sin \alpha)}{\varphi D} = \frac{\lambda m W}{\varphi D \sigma} = \frac{\lambda m N}{\varphi D}$
- Use large *m*, large *N* (i.e., large grating)
- Larger telescope \rightarrow larger spectrograph
- Smaller slit (in arcsec) \rightarrow smaller spectrograph
 - But loses light if < seeing disk
 - Trick: image slicing ("cut and stack" star image)
- Attractive alternative: use adaptive optics (in that case $\varphi \approx \lambda/D$)

Interior of the CARMENES NIR Spectrograph

CARMENES Vacuum Tank

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Grating Geometry

Andreas Quirrenbach

Fundamentals of Instrumentation

- Best resolution for $\alpha = \beta$ (Littrow configuration)
- Resolution in Littrow configuration:

$$R = \frac{2W}{\varphi D} \sin \beta$$
$$= \frac{2d_1}{\varphi D} \tan \beta$$

Typical Values for Echelle Spectrograph

- Approximate values for CARMENES VIS:
 - $-\lambda = 8,000 \text{ Å}$
 - -m = 77
 - $-\sigma^{-1} = 31.6 \text{ mm}^{-1}$
 - $d_1 = 15 \text{ cm}$
 - $\tan \beta = 4$ (i.e., W = 60 cm)
 - $\varphi = 1.5$ ", sliced in two
 - D = 3.5 m
- Resolution: $R \approx 94,000$

Intensity Pattern of Single Diffracted Wavelength

BF = Blaze Function IF = Interference Factor

Andreas Quirrenbach

Fundamentals of Instrumentation

Reflection Grating with Facets Tilted to Shift Blaze Function by 2δ

UNIVERSITÄT HEIDEI BERG ZUKUNFT SEIT 1386

Andreas Quirrenbach

Fundamentals of Instrumentation

Blaze Function for Three Orders

Andreas Quirrenbach

Fundamentals of Instrumentation

Blaze Function Plotted Against Wavelength

Andreas Quirrenbach

Fundamentals of Instrumentation

Sagan WS 2020

- 17 -

Blaze Function for Echelle in **Littrow Configuration**

The Necessity of Order Sorting

1200 gr/mm grating

You want to observe λ_1 in order m=1, but light λ_2 at order m=2, where $\lambda_1 \neq \lambda_2$ contaminates your spectra

Order blocking filters must be used

Andreas Quirrenbach

Fundamentals of Instrumentation

Order Overlap for Echelle Grating

79 gr/mm grating

Schematic: orders separated in the vertical direction for clarity

In reality:

Need interference filters but why throw away light?

Andreas Quirrenbach

Fundamentals of Instrumentation

Sagan WS 2020

UNIVERSITÄT HEIDELBERG ZUKUNFT

SEIT 1386

Order Sorting

- If no measures are taken, different wavelengths (from different orders) fall on the same pixel
 1st order 9000Å, 2nd order 4500Å, 3rd order 3000Å
- Bandpass filter can be used to select desired order (= desired wavelength range)
- Cross-dispersion can be used to record large spectral range in one shot

The Cross-Dispersion Principle

Andreas Quirrenbach Fundamentals of Instrumentation Sagan WS 2020

Cross-Dispersed Spectrograph

Cross-Dispersed Echelle Format

Andreas Quirrenbach

Fundamentals of Instrumentation

Sagan WS 2020

- 24 -

Solar Spectrum Taken With An Echelle

Recommended Reading

Andreas Quirrenbach

Fundamental Limit for RV Precision

A Frequently Asked Question

- Typical spectrograph resolution is R = 100,000
- This corresponds to a Doppler velocity $\Delta v = c \ \Delta \lambda / \lambda = c/R = 3 \text{ km/s}$
- We can use these instruments to measure Doppler shifts with amplitude $\approx 1 \ m/s$
- How is that possible???

Precision of Line Position Determination

Same for Data with Smaller Error Bars

Signal-to-Noise Ratio and Measurement Precision

- Measurement precision: $\delta x \approx FWHM/SNR$
- Fundamental limit: photon noise, SNR = $N/\sqrt{N} = \sqrt{N}$
- Example: Gaia Satellite
 - Resolution ~ 0.1", astrometric precision ~ 20 μas
- Application to Doppler spectroscopy: $\delta v \approx \Delta v / SNR = c / (R \cdot SNR)$
 - For R = 100,000, SNR = 100: $\delta v = 30$ m/s

Doppler Precision and Spectral Information Content

- Stellar spectra have many spectral lines.
- Each line provides a statistically independent measurement of the stellar RV.
- Averaging over *n* lines reduces the uncertainty by a factor \sqrt{n} .
- In practice: calculation of correlation function
- Aggregate amount of spectral information in factor $Q: \delta v \approx c/(Q \cdot SNR)$
 - *Q* depends on wavelength range, resolution *R*, and stellar spectrum

Andreas Quirrenbach

Fundamentals of Instrumentation

Quality Factor for $3800 \text{ Å} \le \lambda \le 6800 \text{ Å}$

Bouchy et al. (2001)

Andreas Quirrenbach

Fundamentals of Instrumentation

Spectrograph Stability and Calibration

- 1 m/s corresponds to ~ 1/1000 detector pixel
 - $\sim 15 \text{ nm}, \sim 30 \text{ Silicon atoms}$
- Extreme instrument stability required
 - Vacuum to eliminate pressure fluctuations
 - Thermal stability (typically on mK level)
 - No moving parts
 - Undisturbed operation
 - Simultaneous calibration

CARMENES Overall Instrument Layout Front-End

NIR Spectrograph

VIS Spectrograph

CARMENES NIR Spectrograph

Stellar Spectrum with Calibration Lines

Andreas Quirrenbach

Fundamentals of Instrumentation

Calibration Lamp Exposures: Problems with Bright Lines

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Th-Ne

U-Ne

U-Ar

Andreas Quirrenbach

Fundamentals of Instrumentation

Sagan WS 2020

- 39 -

CARMENES VIS Spectral Format with Febry-Pérot

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

VIS 61 orders 0.52-0.96 μm

Andreas Quirrenbach

Fundamentals of Instrumentation

Fundamentals of Instrumentation

Sagan WS 2020

Ð

Spectrograph

Scrambler

Avila & Singh (2008)

- 41 -

UNIVERSITÄT

HEIDELBERG ZUKUNFT SEIT 1386

Star position variation

Fibre input

Spectrograph Input Stability

- At each λ, spectrograph images slit to detector
- ⇒ image motion looks
 like RV variation
- Optical fiber coupling
 - Fiber output is always more stable than input
- Octagonal fiber or scrambler for even better stability

F

Round Fiber Input and Output

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Andreas Quirrenbach

Fundamentals of Instrumentation

CARMENES Fiber Link (Circular + Octagonal)

40 60 80 100 120

300 400

Andreas Quirrenbach

Fundamentals of Instrumentation

Telluric Absorption

Andreas Quirrenbach

Fundamentals of Instrumentation

Sagan WS 2020

- 44 -

The Seven Challenges of EPRV

Challenge 1:	Basic physics (photon noise)
Challenge 2:	Stable spectrographs
Challenge 3:	Stable coupling
Challenge 4:	Stable and precise calibration
Challenge 5:	Stable and precise data reduction
Challenge 6:	Unstable stars
Challenge 7:	Unstable atmosphere

Andreas Quirrenbach Fundamentals of Instrumentation Sagan WS 2020