Discovering New Stellar, Brown Dwarf, and Planetary Companions Orbiting 472 of the Nearest K Dwarfs

Leonardo Paredes ${ }^{1,2}$, Todd J. Henry ${ }^{2}$, Daniel A. Nusdeo ${ }^{1,2}$, Wei-Chun Ja0 ${ }^{1,2}$, Hodari-Sadiki James ${ }^{1,2}$ and the Speckle Team 1. Georgia State University 2. RECONS Institute

K-KIDS project is a comprehensive study of the multiplicity of a volume-complete sample of $\sim 5000 \mathrm{~K}$ dwarfs within 50 pc. K-KIDS aims to search for stellar, substellar, and planetary companions using three observational techniques to cover separations from 10000 AU to 0.1 AU . In this work, we present the results of our companion search for 472 K dwarfs using the radial velocity (RV) technique. Now in the third year of the survey using the CHIRON Spectrograph at the CTIO/SMARTS 1.5 m , we have achieved precisions down to $\mathbf{7} \mathbf{~ m} / \mathbf{s}$ for K dwarfs with V magnitudes between $7.0-11.5$. Of the 472 K dwarfs within 33 pc and between DEC $+30^{\circ}$ and -30°, a sample of $\mathbf{3 0 0} \mathbf{K}$ dwarfs did not have high precision RV measurements before, and are now the first portion of our volume-complete survey. Among the 300 stars we have found $\mathbf{6 3}$ RV perturbations consistent with companions never detected before, of which 28 are stellar nature, 7 are likely brown dwarf, and 28 are likely planet candidates. Combining these results with known companions, we present here a detailed portrait of K dwarf systems and their orbital architectures. Ultimately, by using a careful defined sample, a multi-technique systematic search, and the combination of previous studies, the K-KIDS project will provide key insights for understanding star and planet formation processes for decades to come.

The Radial Velocity Survey

New Orbits Found!

- Now after $\mathbf{2 . 5}$ years surveying $\mathbf{3 0 0}$ stars we have solved $\mathbf{3 1}$ orbits of stellar, sub-stellar and planetary companions.
- Periods ranging from ~ 2 days up to ~ 10 years.
- Minimum masses from $0.6 \mathrm{M}_{\mathrm{s}}$ to $0.8 \mathrm{M}_{\mathrm{s}}$. - Semi-major axis from 0.03 to 8.2 AU .

- The observing strategy is to complete at least 9 observations separated by few days, a month and a year •
- $\mathbf{2 7 3}$ K dwarfs $(\mathbf{9 1 \%})$ are fully covered to date, and $27(9 \%)$ need their one-year apart observations \bullet
- Follow-up observations are added when we detect changes on the RV of the star and solve for an orbit •
- We have developed a custom pipeline to efficiently extract RVs from thousands of CHIRON spectra -

RESULTS

RV trends and Speckle

On RV curves that only exhibit a steady constant change in velocity, Keplerian orbits are unlikely to fit Therefore, we can only estimate a minimum period and a minimum RV amplitude.

Our speckle imaging survey ${ }^{3}$ done on all of these 472 K dwarfs is providing detections of secondary components from separations of $\sim 10^{-3 \prime}$ to $\sim \mathbf{3}^{\prime \prime}$, to determine if the RV trend is due to a wider companion or to a lower mass closer companion.

