FUTURE FLAGSHIPS FOR DISKS AND YOUNG

PLANETS

AKI ROBERGE

NASA GODDARD SPACE FLIGHT CENTER

SAGAN SUMMER WORKSHOP July 23, 2021

a NEW EPOCH of DISCOVERY

WWW. GREATOBSERVATORIES. ORG

WAVELENGTH RANGE COMPARISON

LUVOIR ARCHITECTURES

Two LUVOIR designs

Total wavelength range: 100 nm - 2.5 μm Four instruments (discussed in next slides) Launch date ~ late-2030s Serviceable and upgradable 5-year prime mission duration, 10 years of consumables 25-year lifetime goal for non-serviceable components

LUVOIR-B Off-axis telescope 8-m aperture LUVOIR-A deployment and pointing sequence

Watch LUVOIR-B video at https://www.luvoirtelescope.org/design

THE LUVOIR INSTRUMENTS

Observational challenge

Faint planets next to bright stars

Extreme Coronagraph for Llving Planetary Systems (ECLIPS) Contrast ~ 10⁻¹⁰ Bandpass: 0.2 µm to 2.0 µm Broad-band imaging Imaging spectroscopy: Vis R=140, NIR R=70 & 200 Tech development via Roman Space Telescope Coronagraph Instrument

THE LUVOIR INSTRUMENTS

Observational challenge

Very cold to very hot gases

LUVOIR UV Multi-Object Spectrograph (LUMOS) Bandpass: 100 nm to 1000 nm R = 500 - 56,000Up to 840 simultaneous spectra FUV imaging channel Heritage from STIS, COS, & NIRSPEC

HST COS UV instrument

THE LUVOIR INSTRUMENTS

Observational challenge

Imaging the ultra-faint and very small at high resolution

High-Definition Imager (HDI)

2 x 3 arcmin field-of-view Bandpass: 0.2 μm to 2.5 μm Large suite of filters & grisms Micro-arcsec astrometry capability Heritage from HST WFC3 & Roman WFI

Roman WFI focal plane

POLLUX – EUROPEAN CONTRIBUTION TO LUVOIR

UV spectropolarimeter (100 – 400 nm) Circular + linear polarization High resolution point-source spectroscopy (R ~ 120,000)

Star-exoplanet interactions

Fundamental physics & cosmology

ISM and CGM

Stellar magnetic fields

Active galactic nuclei

Solar System

HobEx PREFERRED ARCHITECTURE

4-m off-axis monolith primary mirror Total wavelength range: 115 nm – 1.8 μm Four instruments:

- Coronagraph Instrument \rightarrow similar to LUVOIR ECLIPS
- UV Spectrograph (UVS) \rightarrow similar to LUVOIR LUMOS
- HabEx Workhorse Camera (HWC) \rightarrow similar to LUVOIR HDI
- Starshade Instrument \rightarrow unique to HabEx

Launch date ~ mid-2030s

Serviceable

5-year prime mission duration, 10 years of propellant Also studied 8 other architectures with smaller apertures

HobEx Starshade

Inner working angle (*IWA*)

76,600 km separation

Telescope aperture diameter 4 m

Starshade diameter 52 m

EXOTIC WORLDS

THE SEARCH FOR LIFE

OUR DYNAMIC Solar System

COSMIC ORIGINS

AAAC Exoplanet Task Force

THE HABITABLE PLANET SURVEY OBSERVATIONS

Jupiter

Venus

Earth

Simulated high-contrast image of the Solar System at 12.5 pc with ECLIPS on LUVOIR-A

Hundreds of stars with LUVOIR, dozens with HabEx Preliminary characterization for every habitable planet candidate Detailed follow-up of promising candidates

WHAT WOULD AN INHABITED EXOPLANET LOOK LIKE? Rayleigh Earth at 10 pc $\approx 30^{\text{th}}$ magnitude O₃ 1.5 Planet-star flux ratio x 10⁻¹⁰ H₂O O_2 CH₄ H₂O H₂O H₂O H_2O O_2

SNR = 8.5 in each bandpass - needed to *measure* molecules

0.5

1.0 Wavelength [µm]

1.5

2.0

17

THREE INHABITED PLANETS: THE EARTH THROUGH TIME

NOT ONLY HABITABLE PLANET CANDIDATES

19

NOT ONLY HABITABLE PLANET CANDIDATES

Estimated yields of other types of exoplanets found in hab. planet survey LUVOIR-A ~ 648, LUVOIR-B ~ 576 HabEx ~ 178

These planets will inevitably have a range of ages

COMPARATIVE EXOPLANETOLOGY

Cold to warm planets NUV / optical / NIR direct spectroscopy

þ þ Jupiter × × flux / Star flux 0.4 1.0 Star 0.3 0.2 0.5 Planet lanet 0.1 00 2.0 0.0 0.5 1.0 0.0 0.5 1.0 1.5 1.5 2.0 Wavelength (µm) Wavelength (µm) 10⁻⁹ U Jupiter Ö × Star flux flux 10 Planet / Cloudy Nebtur 1.5 0.5 1.0 0.0 0.5 1.0 1.5 2.0 0.0 2.0 Wavelength (µm) Wavelength (µm) 80 10 þ 2 AU Neptune 0.8 AU Jupiter × × 60 1.5 Planet / Star flux flux Star 40 lanet 0.5 20 0.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 Wavelength (µm) Wavelength (µm)

Warm to hot planets Optical / NIR transit spectroscopy

Atmospheric escape FUV transit spectroscopy

THE DYNAMICAL HISTORIES OF PLANETARY SYSTEMS

Planets + dust from planetesimal belts = complete system architecture

Neptune 3:2 resonance

Partial gap carved by Neptune

Gap carved

Solar System, with planets and interplanetary dust

THE DYNAMICAL HISTORIES OF PLANETARY SYSTEMS

First high-resolution images of warm interplanetary dust from high-contrast imaging

LUVOIR / HabEx dust observations will complement and extend observations with ALMA & other ground-based facilities

Cold interplanetary dust from ALMA

High-fidelity dynamical modeling of whole exoplanetary systems

Inner 12 x 12 AU

THE POWER OF MULTI-OBJECT SPECTROSCOPY

1130

Q

THE POWER OF MULTI-OBJECT SPECTROSCOPY

LUVOIR / HabEx can measure H₂ and water in hundreds of simultaneous protoplanetary disk FUV spectra

THE POWER OF MULTI-OBJECT SPECTROSCOPY

1 LUMOS / UVS map = 30 years of HST observations

OTHER LUVOIR / HABEX PLANET FORMATION SCIENCE Accreting young planets embedded in protoplanetary disks Bright in optical Hα emission and in UV hydrogen continuum emission UV continuum better for measuring accretion rates

Hubble - UV continuum

Hubble – Hα

O R I G I N S

ORIGINS ARCHITECTURE

5.9-m on-axis segmented primary mirror Total wavelength range: 2.8 µm – 588 µm Telescope operating temperature = 4.5 K (Webb temperature = 50 K) Three instruments (discussed in next slide) Launch date ~ mid-2030s Serviceable

5-year prime mission duration, 10 years of propellant

ORIGINS INSTRUMENTS

Origins Survey Spectrometer (OSS) Survey mapping: 25 – 588 μm, R ~ 300 Spectral surveys: 25 – 588 μm, R ~ 43,000 Kinematics: 100 – 200 μm, R ~ 325,000

Far-infrared Imager Polarimeter (FIP) Large area survey mapping: 50 or 250 μm PSF FWHM: 1.75″ at 50 μm, 8.75″ at 250 μm Polarimetry at 50 or 250 μm

Mid-Infrared Spectrometer Camera Transit Spectrometer (MISC-T) Ultra-stable transit spectroscopy: 2.8 – 10.5 μm, R ~ 50 – 100 10.5 – 20 μm, R ~ 165 – 295

ORIGINS SENSITIVITY

Greater sensitivity than Webb at wavelengths $\gtrsim 18 \ \mu m$ 1000x more sensitive than previous far-IR observatories

ORIGINS SCIENCE THEMES

How does the universe work?

How do galaxies form stars, make metals and grow central supermassive black holes?

How did we get here?

How do the conditions for habitability develop during the process of planet formation?

Are we alone?

How common are life bearing planets around M-dwarf stars?

ORIGINS SCIENCE THEMES

How does the universe work?

How did we get here?

How do the conditions for habitability develop during the process of planet formation?

WATER'S ROLE IN PLANET FORMATION

WATER'S ROLE IN PLANET FORMATION: PROTOPLANETARY DISKS

37

WATER'S ROLE IN PLANET FORMATION: PROTOPLANETARY DISKS

Sensitive measurements of water emission lines for ~ 1000 protoplanetary disks within 400 pc

WATER'S ROLE IN PLANET FORMATION: DEBRIS DISKS

Low-density gas in debris disks coming from destruction of young planetesimals is poorly studied

Origins can survey for neutral oxygen (63 µm) and first-ionized carbon emission (157 µm)

ALMA can access neutral carbon and CO

WATER'S ROLE IN PLANET FORMATION: DEBRIS DISKS

Low-density gas in debris disks coming from destruction of young planetesimals is poorly studied

Origins can survey for neutral oxygen (63 µm) and first-ionized carbon emission (157 µm)

Measure C/O ratios for ~ 100 debris disks and infer water content of parent bodies

How were life's ingredients delivered? Comets

How were life's ingredients delivered? Comets

Measure D/H ratios in > 100 solar system comets to better understand migration of small bodies and transport of volatiles

HOW AND WHEN DO PLANETS FORM? DISK MASSES

Total disk masses are critical inputs for planet formation models

Bulk of disk mass in H_{2.} Hard to observe in emission

Typically inferred from dust or CO, both minor constituents in protoplanetary disks Factors of 10 - 100 uncertainty in masses HD should be a more accurate proxy for H₂

HOW AND WHEN DO PLANETS FORM? DISK MASSES

Total disk masses are critical inputs for planet formation models

Bulk of disk mass in H_{2.} Hard to observe in emission

Typically inferred from dust or CO, both minor constituents in protoplanetary disks Factors of 10 - 100 uncertainty in masses

Survey for HD emission from 500 protoplanetary disks Expect factors of 2 – 3 uncertainty in total disk masses

POTENTIALLY HABITABLE PLANETS AROUND M DWARFS

Mid-IR transit spectroscopy well-suited for studying potentially habitable planets around low-mass stars

Starting Point for Origins Search for Life Program

At least 28 known temperate terrestrial planets transiting late-K to late-M dwarfs

Tier 1

Preliminary transit observations to distinguish cloudy / clear atmospheres using CO₂

Tier 2

Eclipse observations of ~ 14 clearest planets around mid- to late-M dwarfs to assess surface temperatures

Tier 3

Deep transit spectroscopy of ~ 10 most promising planets to look for potential biosignatures

TIER 3 – DEEP TRANSIT SPECTROSCOPY

Biosignature gas combinations in Modern Earth

Powerful capabilities of all three missions will enable even more amazing science we haven't thought of yet

