Finding Young Transiting Planets

Major contributions from the Zodiacal Exoplanets in Time (ZEIT) and TESS Hunt for Young and Maturing Exoplanets (THYME) teams.

> Sagan Workshop July 2021

Andrew Mann University of North Carolina at Chapel Hill

Why are we looking for young (transiting) planets?

Credit: NASA/FUSE/Lynette Cook

The answer sets the requirements for how we search.

Kepler (and K2)

100 100 1.00

Credit: NASA/JPL-Caltech/T. Pyle, J. Vargas (IPAC)

Coverage from *TESS* and *K2* is such that most of the nearby young stellar associations have light curves.

Credit: exoplanets.nasa.gov

Stellar variability for old stars

In the absence of stellar variation, finding planet(s) is (comparatively) easy

Transit least squares (Hippie & Heller 2019)

Box least squares (Kovács et al. 2002)

Stellar variability for old stars

Compared to variability in young stars

Removing stellar variability to search for transits

What about a physical model?

Number of spots Spot size Spot contrast Spot position

Fleck (Morris 2020): https://github.com/bmorris3/fleck

Starry-process (Luger et al. 2021): https://github.com/rodluger/starry_process

Spots Appear and Disappear

Rotational Phase

Variation over <100 days

Rampalli et al. (2021)

1.0000 0.9998 0.9996 0.9994 1.99× 2.6 2.8 3.0 3.2 Phased time (days) 1.8 1.9 2.0 2.1 2.2 6.4 6.6 6.8 7.0

BJD - 2454833

Time

Removing stellar variability to search for transits Flexible (non-physical) methods

Time-variable filtering or local fitting window

https://github.com/hippke/wotan

Hippke et al. (2019)

Removing stellar variability to search for transits

Variability removal with a (local) filter

Variability removal with a (median) filter

Most (but not all) of the planets from the Zodiacal Exoplanets in Time (ZEIT) survey were found this way

Mann et al. (2016, 2017, 2018) Gaidos et al. (2017); Vanderburg et al. (2018)

Removing stellar variability to search for transits

Similar timescales

Variability removal with a (median) filter

HIP 67522 b ~20 Myr Hot Jupiter (JWST atmosphere target)

Advantages:

-Can fit a wide variety of stellar variations.

-Don't need a physical model, just pick a kernel (use a periodic one).

-Easy-to-use implementations (see Celerite <u>https://celerite.readthedocs.io/</u> <u>en/stable/</u>).

GPs offer a flexible method to model correlated noise in time series

Time (days)

K2SC Aigrain et al. (2016)

GPs offer a flexible method to model correlated noise in time series

Newton et al. (2019, 2021) Mann et al. (in prep)

Disadvantages:

-Computationally expensive (impractical for large datasets).

-Highly sensitive to outliers.

Relative Flux 1.005

1.000

0.985

0.980

Relative Flux

GPs offer a flexible method to model correlated noise in time series

GPs offer a flexible method to model correlated noise in time series

Disadvantages:

-Computationally expensive (impractical for large datasets).

-Highly sensitive to outliers.

-Can impact or remove planets (GP does not know what a transit looks like).

rel. flux

K2SC Aigrain et al. (2016)

More aggressive methods remove stellar variability, but impact (or remove) the transit.

Less aggressive methods leave the stellar variability intact, making it challenging to detect a weak transit.

Mitigation methods will almost always incur a computational cost.

A hybrid method:

-Assume there's a transit in the data, force a transit-like model.

-Use flexible (polynomial or spline) detrending.

https://github.com/arizzuto/Notch_and_LOCoR Rizzuto, Mann, Vanderburg et al. (2017)

Notch Filter

A hybrid method:	1.12
	1.10
-Assume there's a transit in the data, force a transit-like model.	1.0
	1.0
-Use flexible (polynomial or spline) detrending.	1.04
	1.02
-Iterate to remove outliers (e.g., flares).	1.00
	0.98
	0.9

https://github.com/arizzuto/Notch_and_LOCoR Rizzuto, Mann, Vanderburg et al. (2017)

Works like a matched filter e.g., Berta et al. 2012 and Foreman-Mackey et al. 2015

https://github.com/arizzuto/Notch_and_LOCoR Rizzuto, Mann, Vanderburg et al. (2017)

Notches are included only if they improve the fit.

Improvement based on Bayesian information criterion (BIC) test. The BIC values are recorded.

Individual "notches" contain useful information.

This is largely independent of running Box-leastsquares (BLS) search.

We often run a periodogram on the ΔBIC values.

This is largely independent of running Box-leastsquares (BLS) search.

We often run a periodogram on the ΔBIC values.

Let's us find singletransiting systems!

Cons: -More computationally expensive than most filtering options.

-Notch can be tricked by rotation.

Cons: -More computationally expensive than most filtering options.

-Notch can be tricked by rotation.

-Performs poorly for the fastest rotators and planets near the rotation period.

Problem: what do we do about the fastest rotators?

Notch and similar filters use 'local' information.

This is a challenge for fast rotators because there are only a handful of 'local' measurements for a given rotation.

Our Second Approach: LoCoR

Problem: what do we do about the fastest rotators?

Rotation modulation changes, but there are similarities over the whole curve Notch and similar filters use 'local' information.

This is a challenge for fast rotators because there are only a handful of 'local' measurements for a given rotation.

The solution is to use 'global' information.

Our Second Approach: LoCoR

Problem: what do we do about the fastest rotators?

Take each individual 'pseudorotation'.

Build a light curve from linear combinations of pseudo-rotation curves.

Effectively, fit the light curve using other parts of the curve.

LoCoR

Residual suggests we can take 1-2% remove rotational modulation to better than 0.1%.

Better data and better methods have greatly expanded the sample of young transiting planets

~40 young transiting planets so far.

Most found with simple filtering methods.

But only Notch/LoCoR recovered all of them consistently.

Discoveries across TESS, K2, and Kepler mission data.

Injection/Recovery

Injection/Recovery

Injection/Recovery

Injection/Recovery

Injection/Recovery

Injection/Recovery

Did we recover the planet? Did we recover the planet? Notch filtering

Injection/Recovery

Did we recover the planet?

Repeat that >10,000 times per star

Notch filtering

Injection/Recovery

 (R_E) 2

Blue = recovered planet Red = not recovered planet

- Green star = real planet

https://github.com/arizzuto/Notch_and_LOCoR Rizzuto, Mann, Vanderburg et al. (2017) Used in most ZEIT and THYME papers

Completeness

Statistics

- -Exoplanet migration
- -Density evolution
- -Photoevporation
- -Planet cooling

. . .

Ask me during the live session One of the 'meet the speakers' sessions Or

Email me: awmann@unc.edu

Questions?