Techniques, Observations, and Diagnostics of Protoplanetary Disks: Inner Disk

> Joan Najita (NSF's NOIRLab) 2021 Sagan Summer Workshop

Who am I?

A research astronomer in Tucson, Arizona

- Study star and planet formation, the Milky Way, etc.
- Theory, observations, archival data, storytelling

Staff astronomer at an Observatory (NSF's NOIRLab)

- NOIRLab is the unification of NOAO, Gemini Observatory, and Rubin Observatory, which is carrying out the Legacy Survey of Space and Time (LSST).
- At NOIRLab, we plan and deliver new facilities, initiatives, instruments, observing modes, data systems and analysis tools...to enable anyone with a good idea to pursue it using forefront capabilities.

Welcome to contact me: joan.najita@noirlab.edu

UV/IR, Inner Disks, Planet Formation

Brief sampling of techniques, ideas, science:

- Stellar accretion
 - Inner disk lifetime
 - Nature of transition disks
- Disk structure and substructure
 - Inner gas disk radii
 - Orbiting gaseous circumplanetary disks
- Disk chemistry
 - Probe planetesimal formation (otherwise elusive)
- Disk dynamics
 - Possible accretion in action

Disks in Star and Planet Formation

Molecular cloud cores have finite angular momentum.

When they collapse, disks form.

Stars grow by accretion through disks. Planets also form there.

10,000 AU

Inner disk (< 10 au)

Outer disk: talk by Laura Perez

Credit: ALMA (ESO/NAOJ/NRAO)

Exoplanet Populations

High resolution Spectroscopy: Probes planet formation region

Imaging: ALMA, high contrast NIR

The near-stellar environment of T Tauri Stars

Accretion through disks and onto star via a magnetosphere

NUV/Optical Diagnostics

Credit: Alcala in "Accretion & winds/outflows in solar-type YSOs"

FUV Diagnostics

Atomic lines (e.g., CIV): diagnose accretion Ly α : dominates FUV luminosity, affects disk chemistry H₂ fluorescence: probes Ly α -irradiated disk **EUV and soft X-rays:** disk photoevaporation

Rich H₂ fluorescence spectrum

200

150

100

AA Tau

V4046 Sgr / 4

High res spectroscopy (line profiles)

Nature of stellar accretion (it's magnetospheres)

Accretion onto Star

Via a boundary layer?

Double-peaked profile from a thin annulus

Stellar Accretion via Magnetospheres

See also Calvet & Hartmann 1992; Hartmann et al. 1994; Muzerolle et al. 1998

Low res spectroscopy (line fluxes)

Measuring accretion

Measuring Accretion Rates

Luminosity method:

Credit: Alcala in "Accretion & winds/outflows in solar-type YSOs"

Primary indicator:

Measure UV continuum luminosity.

Secondary indicators:

Correlate UV flux with line fluxes (HI lines, CIV, etc)

Accretion demographics

Gas disk lifetime, nature of transition disks

Accretion and gas disk lifetime

Fedele et al. (2010)

Accretion and nature of transition disks*

*Protoplanetary disk whose center is optically thin in continuum

Planetesimal formation Low-mass gas giant

EUV Photoevaporation

High mass gas giant

See Najita et al 2008, 2015; Kim et al. 2016

IR Spectroscopy and Disks

- Dynamics
- Structure
- Chemistry

Gaseous Probes of Inner Disks

IR molecular diagnostics probe planet formation region within the snow line

CO Fundamental!

CO Overtone!

4.7μm Probes disk (sub)structure!

MIR Water / Organics!

12-18 μm Disk chemistry, Planetesimal formation, solid migration Disk surface accretion

UV/IR, Inner Disks, Planet Formation

Brief sampling of techniques, ideas, science:

- Stellar accretion
 - Inner disk lifetime
 - Nature of transition disks
- Disk structure and substructure
 - Inner gas disk radii
 - Orbiting gaseous circumplanetary disks
- Disk chemistry
 - Probe planetesimal formation (otherwise elusive)
- Disk dynamics
 - Possible accretion in action

High res spectroscopy (line profiles)

Studying inner disk structure

e.g., Carr 2007; Hoadley et al. 2015

Inner Disk Radii and Exoplanet Orbital Radii

Exoplanet Populations

Gas giants can migrate into the inner disk edge

Spectroastrometry

Detecting forming planets and circumplanetary disks (birthplaces of moons)

Pontoppidan et al. 2008; Brittain et al. 2010, 2015, 2019; Whelan et al. 2021

Circumplanetary Disk in HD100546

Credit: NOIRLab/<u>NSF</u>/AURA/P. Marenfeld

Fun with high s/n spectroscopy

CO fundamental emission from HD100546, a young intermediate mass star

Brittain et al. (2009): shows transitions of CO v=1-0,...,7-6 ¹³CO v=1-0, 2-1 C¹⁸O v=1-0

Circumplanetary Disk in HD100546

Credit: NOIRLab/<u>NSF</u>/AURA/P. Marenfeld

Circumplanetary Disk in HD100546

IR Spectroscopy: Structure and Sub-structure

High spectral resolution as a surrogate for high spatial resolution

• E.g., measure inner disk radii.

Spectroastrometry enables super-resolution

• E.g., detect orbiting gaseous circumplanetary disk.

Credit: Galileo Project/Voyager Project/NASA's JPL

MIR molecular spectroscopy

Chemical Fingerprint of Planetesimal / Protoplanet Formation

e.g., Carr et al. 2011; Najita et al. 2011, 2013; Banzatti et al. 2020

Story of Core Accretion

Grains (µm) grew...

Planetesimals (km) that grew...

Protoplanets (~1000s km) that grew...

Giant planets (10⁵ km) 5-10 M_{Earth} core accretion of gaseous envelope

Remnant disk cleared...The End

What is a signpost of core accretion?

- Core accretion makes planetesimals and protoplanets
- Are these abundant at epoch of planet formation?

Core Accretion

Gravitational Instability

Mayer et al. 2004

What do planetesimals look like?

67P: ESA/Rosetta/NAVCAM

Solid aerodynamics and C/O of inner disk

Planetesimal (~1 km) and protoplanet (~ M_{Mars}) formation dehydrates and enhances C/O of inner disk.

Cf. Cuzzi & Zahnle 2004; Ciesla & Cuzzi 2007

Planetesimals and C/O of Inner Disk

- Icy planetesimals sequester water and O beyond the snow line
- Efficient formation dehydrates inner disk, raises C/O ratio

Chemical signature of rising C/O

Doubling C/O produces 10 fold increase in HCN/H₂O warm column ratio

Inner Disk Molecules in Emission

See also Carr & Najita 2011; Salyk et al. 2008, 2011; Pontoppidan et al. 2010

Planetesimal Formation and C/O

lcy protoplanets

More massive disks form protoplanets quicker, have higher C/O ratio?

HCN/H2O Ratio vs. Disk Mass

Chemical signature of planetesimal formation

MIR molecular emission from here

Molecular message from 2013:

Disks are not primordial – they have formed planetesimals or protoplanets – a chemical signature of core accretion in action!

Not here...

...but here!

ALMA Observes HL Tau

Rings and Spirals in DSHARP

Andrews et al. 2018

Chemical signature of planetesimal formation?

High resolution MIR spectroscopy

Observing disk accretion in action?

e.g., Najita et al. 2021

Exoplanet Populations

Migration is important

How does matter reach the magnetosphere?

Stars accrete via magnetospheres and transport angular momentum to the inner disk, which is removed in a wind/jet from inner disk.

But how does accreting matter reach the magnetosphere?

Hoy do disks accrete?

Inner Disk Molecules in Emission

GV Tau N: Spitzer/IRS molecular absorption

GV Tau N: high resolution line profiles

Redshifted line profiles

- 4-20 km/s
- C2H2, HCN, NH3, H2O
- TEXES/Gemini R=100,000

Measure component equivalent widths and infer

- Temperature T
- Absorption column density N
- Intrinsic line width Δv
- Filling factor f

Heliocentric velocity (km/s)

- Molecular abundances, temperature of inner disks at ~ 1 au
- High column density → disk atmosphere viewed edge on
- Supersonic inflow velocities

Inner disk atmosphere seen edge on

Disk accretion in action through disk atmosphere?

Accretion rate ~ TTS: $10^{-8} - 10^{-7} M_{sun}/yr$ i.e., Mdot = $2\pi r_a m_H v_r N_{perp}$ $N_{perp} \sim 0.1 N_{abs} / x_{mol}$

Disk accretion in a thin atmosphere

Fast current...overlying a "deep ocean" of the disk...hospitable to planet formation?

Summary: UV/Optical Spectroscopy

- Rich UV-optical spectrum, long history, well studied
- Diverse questions/issues:
- How stars accrete
 - Via magnetospheres not boundary layers
- Demographics of stellar accretion rates bear on:
 - Gas dissipation timescale of inner disk (planet formation, migration)
 - Nature of transition disks (due to planets or not?)

Summary: Infrared Spectroscopy

- Many diagnostics available, much less well studied Fun, powerful techniques (e.g., spectroastrometry) Diverse questions/issues
- Disk structure and substructure
 - Measure inner gas disk radii (planetary orbital radii)
 - Identify orbiting gaseous circumplanetary disks (birthplaces of moons)
- Disk chemistry
 - Probe planetesimal formation, an otherwise elusive process?
- Disk dynamics
 - Do disks accrete through their atmospheres?