Accretion onto Planets and Circumplanetary Disks

Kate Follette

Assistant Professor of Astronomy Amherst College

Talk Outline

5 Reasons why you should care

Accreting Protoplanets 4 Reasons why it's hard to study them

The Future 3 things that I think will revolutionize this field

K. Follette, Sagan Summer Workshop, July 2021

Reason 1: Visceral Satisfaction

Reason 2 : Directly Imaged Planets are Young

Reason 3: Orbital Characterization

William Balmer '21 (they/them) Senior Thesis *Now: JHU Grad Student*

Alex Watson '19 (they/them) Senior Thesis

HD 142527 B: Orbital Characterization

Reason 4: Spectral Characterization

Kim Ward-Duong (she/her) STScI Fellow → Smith College

HD 206893 B (b?)

Ward-Duong, Patience, Follette+ 2021

Gemini Planet Imager Exoplanet Survey Debris Disk Gallery

Reason 5: Collateral Disks

Esposito+ 2020

5 Reasons to Care about Direct Imaging

1.Visceral Satisfaction
2.Dynamics/Orbital Characterization
3.Spectral Characterization
4.Youngest Planets
5.Disk-Planet Interaction

How do you study the planet formation process?

Strategy 1: Take high resolution, high contrast images of the disks and look for "signposts"

K. Follette, Sagan Summer Workshop, July 2021

Circumstellar Disks Structures = "Signposts" of Planets?

Alex DelFranco '24 Narrow (he/him) Amherst College Shadows

Rings

Broad

Back

Sides

Dane Mansfield '23 (he/him) Amherst College

M stars

FGK stars **AB** stars

How do you study the planet formation process?

Strategy 1: Take high resolution, high contrast images of the disks and look for "signposts"

Strategy 2: Look for the planets themselves!

Transitional disks with cleared central cavities are likely sites of ongoing planet formation

These cavities have radii of tens of AU

Most nearby planet forming regions are ~140pc away

This translates to 0.1"-0.3" cavities for most transitional disks

K. Follette, Sagan Summer Workshop, July 2021

Obstacle 2: Contrast

Accreting Protoplanets are Bright at H-alpha!

Obstacle 2: Resolution

$$\theta = 1.22 \frac{\lambda}{D}$$
 \rightarrow Bigger telescope or shorter wavelength

Visible Light Pros Diffraction limit $\theta = 1.22 \frac{\lambda}{D}$

Visible Light Cons

Atmo. coherence length $r_0 \sim \lambda^{6/5}$

Atmo. coherence time $\tau \sim \frac{r_0}{v}$

LkCa15 b – An Accreting Protoplanet

Sallum, Follette et al. 2015 Nature

LkCa 15 b – A disk artifact?

Thalmann+ 2016

Sallum, Follette+ 2015

Currie+ 2019

Follette et al. 2017

K. Follette, Sagan Summer Workshop, July 2021

Adams, Follette+ 2021 in prep

PDS 70 b to the rescue!

K. Follette, Sagan Summer Workshop, July 2021

Accretion Diagnostics and Paradigms

Sallum, Follette et al. 2015 Nature

Contrast = $8 \times 10^{-3} \rightarrow L_{H\alpha} \approx 6 \times 10^{-5} L_{\odot} \rightarrow L_{acc} \approx 4 \times 10^{-4} L_{\odot} \rightarrow M_P \dot{M} \approx 3 \times 10^{-6} M_J^2 yr^{-1}$ $A_R = 0.75 mag$ T Tauri Relation $L_{H\alpha} \rightarrow L_{acc}$ $R = 1.6 R_J$

Accreting Stars

Accreting Stars and Brown Dwarfs

Sources of Scatter

1. Observational Uncertainties

Joe Palmo (he/him) Senior Thesis

Sources of Scatter

- 1. Observational Uncertainties
- 2. Age

Palmo, Follette+ in prep

K. Follette, Sagan Summer Workshop, July 2021

Joe Palmo

(he/him)

Senior Thesis

Sources of Scatter

- 1. Observational Uncertainties
- 2. Age
- -6Planets Brown Dwarfs Stars Variability 3. -7 log(Mass Accretion Rate) (M $_{\odot}$ /yr) -8 -9 Х -10 \times \times -11 × X × **Empirical Relationship** -12 Deuterium Burning Limit × Hydrogen Burning Limit \times -13 Annie's Database × Joe Palmo Venuti+ 2014 Data (he/him) -14-1.5 -2.0 -2.5 0.0 -1.0-0.5 0.5 $log(Mass) (M_{\odot})$ Senior Thesis

Palmo, Follette+ in prep

K. Follette, Sagan Summer Workshop, July 2021

Accreting Stars and Brown Dwarfs

Accreting Stars and (Isolated) Brown Dwarfs

Accreting Stars and (Isolated) Brown Dwarfs and PMCs

Obstacle 4: We don't understand protoplanetary accretion

Invalid scaling relations?

Artifact of detection limits?

Different accretion paradigms?

Different formation mechanisms?

4 Obstacles to Understanding Protoplanets

Resolution
 Contrast
 Embedded
 Interpretation

3 Things I'm Excited About

1. Multiwavelength Accreting Object Spectral Templates

Accreting Stars and (Isolated) Brown Dwarfs and PMCs

Magnetospheric Accretion

Stellar Accretion Paradigm

Hartmann, Herczeg & Calvet 2016

Multiwavelength SEDs for Accreting Companions

Accreting Brown Dwarf Templates

Sierra Gomez '22

(she/her)

UMass

Follette+ in prep Betti+ in prep

Managener and a second and a second

K. Follette, Sagan Summer Workshop, July 2021

Lillian Jiang '22

(she/her)

Smith College

Accreting Brown Dwarf Templates

Sarah Betti (she/her) 3rd year grad UMass

Line Ratios = Accretion Physics

Lena Trieber '22 (she/her) Amherst College

Accretion Paradigms

Stellar Accretion Paradigm

Hartmann, Herczeg & Calvet 2016

Planetary Accretion Paradigm

Aoyama+ 2019, 2020, Marleau 2019

3 Things I'm Excited About

 Multiwavelength Accreting Object Spectral Templates
 CircumPLANETARY disk detection

Brown Dwarf Disks – they exist!

Ward-Duong+ 2018

K. Follette, Sagan Summer Workshop, July 2021

Circumplanetary Disks – do they exist?

K. Follette, Sagan Summer Workshop, July 2021

Wu+ 2020

Circumplanetary Disks – they exist! PDS 70 to the rescue (again)!

K. Follette, Sagan Summer Workshop, July 2021

Delivery of Material to CPDs– Accretion Streamers

(%)

 $\delta v_{
m rot}$

Delivery of Material – CO Velocity "Kinks"

emitting CO in the selected channel widplane Dust continuum emission kink kink Co upper surface

Pinte+ 2019

3(

25

2(

- 15

- 1(

5

· 70

60

50

30

20

10

40 [¥] 40

Delivery of Material – CO Velocity "Kinks"

Pinte+ 2020

Gas Kinematics as a Probe of Planet Mass

K. Follette, Sagan Summer Workshop, July 2021

Circumplanetary Disks and Infrared Emission

Circumplanetary Disks May Dominate NIR Emission

3 Things I'm Excited About

 Multiwavelength Accreting Object Spectral Templates
 CircumPLANETARY disk detection
 Future technologies and instruments

K. Follette, Sagan Summer Workshop, July 2021

Future – Next Generation Space Telescopes

K. Follette, Sagan Summer Workshop, July 2021

Prospects for ELTs

ELT Resolution ~ 4 mas at R, 13mas at H at 140pc 4mas = 0.6AU and 13mas = 1.8AU

3 Things I'm Excited About

 Multiwavelength Accreting Object Spectral Templates
 CircumPLANETARY disk detection
 Future technologies and instruments

Talk Summary

Protoplanets are a window into planet formation

We have some work to do in learning how to interpret them

