

30-m telescopes

Markus Kasper (ESO)

With inputs from S. Ramsay, R. Davies, N. Thatte and B. Brandl

Overview of the talk

- Why big telescopes?
- Extremely Large Telescopes
- ELT 1st generation instruments: MICADO/MAORY, HARMONI, METIS
- Planetary Camera & Spectrograph (PCS) 2nd gen, tbc

Disclaimer: This is a Euro-centric presentation, US 30-m telescopes are progressing on similar time-scale with similar instruments

The Extremely Large Telescope

https://xkcd.com/1294/

Why build an extremely large telescope?

Astronomers today have access to a huge number of telescopes

On the ground and in space

Not just for visible light, but Xray, radio

The biggest telescopes no longer have of a monolithic circular aperture

Mirror segmentation makes large telescopes possible

ELT, Sagan Worshop, July 2021

Why build larger (aperture) telescopes?

- Resolving power $\theta \simeq 1.22 \frac{\lambda}{D}$
- Light gathering power $\sim A \propto D^2$
- Imaging speed for point sources $\propto D^4$

The effect of telescope size

The Hubble Space Telescope 2.4m diameter

The Very Large Telescope 8m diameter The Extremely Large Telescope 39m diameter

ELT, Sagan Worshop, July 2021

ELT vs VLT: The power of large telescopes

Big telescopes collect more flux ($\propto D^2$)

Consider diffraction limited point source (Airy pattern area)

- \geq Collected point source flux $\propto D^2$
- > AO concentrates flux onto a smaller patch on the sky ($\propto 1/D^2$)

> Sky noise stays constant (flux increase is compensated by patch size decrease)

$$SNR \propto D^2 \times \sqrt{t} \qquad \Rightarrow \qquad t_{SNR} \propto D^{-4}$$

A 40-m telescope can do an observation $5^4 = 625$ times faster than an 8-m, NIR magnitude limit/hr increases by $5^2 = 25$ (from ~23 mag to ~26.5 mag)

3-step process

1.XAO corrects atmospheric turbulence effects (Seeing)2.Diffraction residuals are reduced by coronagraphy3.Residual imperfections are calibrated by differential methods

EXTREMELY LARGE TELESCOPES

ELT, Sagan Worshop, July 2021

Extremely Large Telescope Projects

The 25-m Giant Magellan Telescope (<u>www.gmto.org</u>)

The Thirty Meter Telescope (www.tmt.org)

- The GMT and TMT projects have headquarters in Pasadena, CA
- Involve partners in the USA and around the world.
- GMT will be located in the southern (Chile) and TMT in the northern (likely Hawaii) hemispheres
 providing observations over the whole sky.

ESO's Extremely Large Telescope

ELT, Sagan Worshop, July 2021

A new mountain top for a new telescope

August 2014 Construction of the new road.

San And San Part - San Part

June 2014

Flattening the

peak of Cerro

Armazones

Very Large Telescop

VISTA

+ES

Cerro Armazones

The site today

ELT DOME

- 80m (262 feet) high
- **88**m diameter
- >6000 metric tonnes of rotating mass
- 30mins to walk from the entrance to the top

Telescope structure

- Telescope rotates on oil bearings (largest 50m dia.)
- ~3700 tons incl mirrors and instruments
- Instrument (Nasmyth) platforms are 27-m above ground, 15m x 30m (or ~2 tennis courts !)

ELT optics

M1 – the ELT primary mirror

- M1 consists of 798 hexagonal segments 1.4m in 'diameter'
- 6(+1) identical sectors with 133 different segments types each.
- Circular mirror "blanks" are made by Schott (De) and cut+polished by SAFRAN-REOSC (Fr)

M1 – the ELT primary mirror

- The 798 mirrors are 'phased' to act as a single mirror
- The position is achieved by measuring and adjusting the mirrors using the support structure
- Accuracy is 10s of nanometers 10 000 times smaller than a human hair
- Testing and developing this procedure takes place in ESO's labs in Garching

M2 and M3

- Casting of the 4-m mirrors at Schott (De)
- M2 largest convex mirror ever (4.2m)
- M3 starts from a similar "blank" but is 3.8m and concave
- They are made from Zerodur, a ceramic material which does is very stable with temperature (low-expansion) and weigh ~3000kg
- Mirrors will be polished by SAFRAN-REOSC (Fr) and mounted in a cell made by SENER (Es)

Silver coating

- M4 is an adaptive mirror built by AdOptica (It) and SAFRAN-REOSC (shells, Fr)
- 6 thin "shells" are mounted on 5352 actuators change the mirror shape as fast as 1000 Hz

M5

M5 also helps correct for the atmospheric turbulence "tip-tilt" (image stablisation) up to 10 Hz

2.7m x 2.2m flat, 440 kg, Silicon carbide mirror (Safran-Reosc and Mersen Boostec) mounted on a cell by Sener Aerospatiale

Laser guide stars

- AO needs bright "guide" star near the astronomical target. Sky coverage with NGS is only a few percent
- To observe the whole sky with AO, Artificial guide stars created by lasers exciting Sodium atoms at 90 km height
- Produced by Toptica (De) as for the VLT

ELT INSTRUMENTS

ELT, Sagan Worshop, July 2021

The ELT Nasmyth platform

James Nasmyth (1808-1890)

By Lock & Whitfield - [1], Public Domain, //commons.wikimedia.org/w/index.php?curid=29443070

A VLT on the ELT Nasmyth platform (credit: ESO/Rob Ridings)

Big telescope \rightarrow big instruments

 $x = f\theta$

At the focus of the 39-m ELT (f = 680 m): 1" on the sky = 3.3 mm

At the focus of the 8-m VLT (f = 120 m): 1" on the sky = 0.58 mm

At the focus of the 4-m NTT (f = 38 m): 1" on the sky = 0.186 mm

The diffraction limited spot size stays about the same $(\theta = \lambda/D)$

A diffraction limited ELT instrument with a small FoV can be (relatively) small

ELT, Sagan Worshop, July 2021

Jupiter ~ 40 arcsecs 1<u>32mm at the focus of the E</u>LT

Extremely Large Teams

MAORY Kick-off 2016

- ESO instruments are often built by teams from ESO community institutes and universities.
- ESO often participates in these teams
- ESO always follows the development with a team of engineers and scientists

HARMONI Preliminary Design Review 2017

The ELT Nasmyth platform, view of ~2028

ELT 1st gen Instruments: MICADO & MAORY

- MICADO camera (~2027, SCAO)
- Versatile NIR imager/spectrograph, with lots of observing modes

Nobel Prize Outreach. Photo: rnhard Ludewig **einhard Genzel**

© Nobel Prize Outreach. Photo: Annette Buhl Andreas Cheza

MAORY multi-conjugate AO using laser guide stars (~2028)

Provides MICADO with sharp images over a large FOV (~1')

+ES+ 0 +

MICADO required capabilities

Imaging	Astrometric imaging	High Contrast imaging	Spectroscopy
Wavelength			0.8–2.4 μm
Field-of-view		50.5" x 50.5" (4 mas	oixels); 18" x 18" (1.5 mas pixels)
Filters		IYJHK broad band +	medium and narrow band filters
Relative astrometry		50 µ	as (10 µas goal)
Contrast requirement		1x10 ⁻⁴ at 100	mas; 1x10 ⁻⁵ at 500 mas
Spectral resolution			< 20,000
Simultaneous spectral range		1.45–2.4	6 μm; 0.84–1.48 μm
ELT, Sagan Worshop, July 2021			╺═╋╪╼╢╽╋══╢╽╢╽╋══┠═╸╝╵╹═╹╋╕╸╋╪╝╬╬

MICADO Coronagraphy simulations

added exoplanet at 10 AU, 700 K, log(g)=4 added exoplanet at 5 AU, 1300 K, log(g)=4

Probing a regime where we expect to have masses & radial velocities from GAIA

MICADO contrast sensitivity

Comparison to SPHERE from MICADO PDR report - see also Perrot et al. 2018 (SPIE)

ELT 1st gen Instruments: HARMONI (~2027)

Optical and NIR integral field spectrograph with AO

Wavelength	0.47−2.45 µm	
Spectral resolution	~3,500, 7,500, and 18,000 in the NIR and ~3,500 in the VIS bands	
Simultaneous spectral range	at least one band at a time R~7,500 (i, z, J, H, K), two at R~3,500	
Field(s)-of-view	four, corresponding to different spaxel scales	
AO	LTAO and SCAO	

HARMONI field of views

Equivalent slit length:

16 arcmin

or

ELT focal

plane

4 spaxel scales

31000 spaxels ~200x150

9.12" × 6.12" to 0.63" × 0.84" FoV Half FoV at visible

wavelengths

20 mas10 mas4 mas $60 \text{ mas} \times 30 \text{ mas}$ Best Highest combination spatial For non-AO For optimal of sensitivity resolution & visible sensitivity and spatial (diffraction observations (faint targets) resolution limited) 6.12" × 9.12" 3.04" × 4.08" 152×204 (31000)spaxels at all scales .52 3.2 metres in $0.61'' \times 0.82''$

HARMONI Spectral layout

- 3 spectral resolving powers
- All gratings
 VPHGs in 1st
 order for maximal
 efficiency
- VIS and NIR cameras + all reflective design up to disperser

HARMONI High Contrast capability

SCAO operating mode, 4 mas spaxels and pupil tracking (ADI-like post processing)

- Wavelength range (1450 2450 nm) (goal 1250 2450 nm)
- No coronagraph! 2 Pupil Plane apodisers and 3 focal plane masks (with $T = 10^{-4}$)

Performance goal: 10⁻⁶ (after post-processing) at 100 mas

HARMONI apodisers and performance

Anadiaar	Inner Working Angle		Outer Working Angle	
Apodiser	H band	K band	H band	K band
SP1 (5 - 12 λ/D)	43 mas	60 mas	100 mas	140 mas
SP2 (7 – 40 λ/D)	60 mas	80 mas	340 mas	460 mas

HARMONI Recent Simulation results

Houllé et al., A&A, 2021

- Sestimate detection limit of young giant planets with HARMONI using molecular mapping & ADI
- > detect planets down to ~3 Mjup at 1AU for 30pc, 20Myr stars.
- > contrast limit 15-16 Δ mag (~10⁻⁶)

Detection of 2-3 M_{Jup} as close as 1AU!

ELT 1st gen Instruments: METIS (~2027)

<image/>		Near- to mid-IR imager and spectrograph
	Wavelength coverage	$3-13~\mu m$ (imaging); the imager includes low-resolution slit spectroscopy and coronography $3-5~\mu m$ IFU spectroscopy
	Spectral resolution	Low-resolution, long-slit R~400 (N-band), R~1500 (L-band), R~1900 (M-band) High-resolution, IFU R~100,000 (L,M bands)
	Field-of-view	~10'' (imager), <1'' (high resolution IFU spectroscopy)
	AO	all observing modes work at the diffraction limit with a single conjugate AO system

METIS: Proto-planetary Disks and Planet Formation

Radiative transfer simulations of CO v(1-0) emission at 4.7 µm

Quanz et al. "METIS Science Case" (2019)

METIS contrast

MidIR contrast with ring apodized Vortex coronagraph (Carlomagno et al. proc. SPIE 2020)

Different wavelengths show different things

Mid IR / N-band: Planet glows $c \approx r_s^2 T_s / (r_p^2 T_p)$

Opt/NIR: Planet reflects starlight $c \approx a^2/r_p^2$

https://www.wired.com/2014/04/the-world-looks-different-when-you-see-in-infrared/

+ES+ 0 +

Exoearths with METIS and ELT PCS (~2033)

METIS: solar-type stars, contrast ~ 10^{-6} @ 100 mas, 10⁻⁷ @ 500 mas PCS: late-type stars, contrast ~ 10^{-8} @ 15 mas, 10⁻⁹ @ 100 mas

How PCS achieves high contrast

Combine eXtreme AO with high-resolution (R~100.000) spectroscopy (Snellen et al. 2015)

Concept validation on-sky with 8-m telescopes: HiRISE, KPIC, MagAO-X, SCExAO....

Take away

Ground-based ELTs with AO

- Have superb spatial resolution,
- gain more than 3 magnitudes in sensitivity and
 >500x in speed over 8-m telescopes
- Instruments are extremely large as well and reach imaging contrasts between ~10⁻⁵ (1st gen) at 30-50 mas approaching the iceline at 100pc (MICADO and HARMONI at the ELT, ~2027)
- Terrestrial exoplanets in the HZ are within reach in the mid-IR for solar-type stars (METIS, ~2027) and in the optical/NIR for M dwarfs (PCS, ~2033)

