

DIFFERENTIAL ASTROMETRY FOR EARTHS AT MICRO-ARCSECOND PRECISION

Alberto Krone-Martins

Donald Bren School of Information and Computer Sciences University of California, Irvine

2022 Sagan Summer Workshop

In this short talk...

What and why?

Challenges?

The future?

2022 Sagan Summer Workshop

In this short talk...

What and why?

Challenges?

The future?

2022 Sagan Summer Workshop

ASTROMETRY?

 "All that part of astronomy which specifies reference coordinate systems and/or determines the coordinates of celestial bodies and their derivatives."
H. Eichhorn

ASTROMETRY?

 "All that part of astronomy which specifies reference coordinate systems and/or determines the coordinates of celestial bodies and their derivatives."
H. Eichhorn

- Astrometry:
 - Not strongly affected by stellar activity;
 - Telluric planets around FGK stars.

- Astrometry:
 - Not strongly affected by stellar activity;
 - No sin (i) effect on the mass;

- Astrometry:
 - Not strongly affected by stellar activity;
 - No sin (i) effect on the mass;
 - Full characterisation of the system masses and orbital information.

UCI

- Astrometry:
 - Not strongly affected by stellar activity;
 - No sin (i) effect on the mass;
 - Full characterisation of the system masses and orbital information.

But very small effect!!

$$\Delta \theta = 3 \left(\frac{M_{\rm p}}{M_{\oplus}} \right) \left(\frac{a_{\rm p}}{1 \,{\rm AU}} \right) \left(\frac{M_{\star}}{M_{\odot}} \right)^{-1} \left(\frac{D}{1 \,{\rm pc}} \right)^{-1} \mu {\rm as}$$

- Astrometry:
 - Not strongly affected by stellar activity;
 - No sin (i) effect on the mass;
 - Full characterisation of the system masses and orbital information.

But very small effect!!

$$\Delta \theta = 3 \left(\frac{M_{\rm p}}{M_{\oplus}} \right) \left(\frac{a_{\rm p}}{1 \,{\rm AU}} \right) \left(\frac{M_{\star}}{M_{\odot}} \right)^{-1} \left(\frac{D}{1 \,{\rm pc}} \right)^{-1} \mu {\rm as}$$

Earth at 1 AU of a Sun at 10pc ~ 0.3 uas

- Astrometry:
 - Not strongly affected by stellar activity;
 - No sin (i) effect on the mass;
 - Full characterisation of the system masses and orbital information.

Very simplistic way to perform a detection of a 1.5 MEarth planet at the HZ of a Sun at 10pc

Malbet et al. 2012 (NEAT proposal)

Alberto Krone-Martins

DIFFERENTIAL ASTROMETRY?

 Astrometry determines the coordinates of celestial bodies and their derivatives.

 $\delta_i = \delta_{i0} + \mu_{\delta i} t_j + \varpi_i Q_j + M_{ij} + \epsilon_{\delta}(t_j)$

In this short talk...

What and why?

Challenges?

The future?

2022 Sagan Summer Workshop

SOME DIFFERENTIAL ASTROMETRY CHALLENGES FOR PLANETS

REFERENCE FRAME

INSTRUMENT STABILITY

PHYSICAL MODELLING

METHODOLOGY

UCI

SOME DIFFERENTIAL ASTROMETRY CHALLENGES FOR PLANETS

- Primary system materialization: QSOs
 - OSOs are not really point sources; they do have structure after enough resolution is reached

- Primary system materialization: QSOs
 - OSOs are not really point sources; they do have structure after enough resolution is reached

2022 Sagan Summer Workshop

Alberto Krone-Martins

- Primary system materialization: QSOs
 - QSOs are not really point sources; they do have structure after enough resolution is reached
 - > and this structure evolves with time: instability in positions

- Primary system materialization: QSOs
 - QSOs are not really point sources; they do have structure after enough resolution is reached
 - and this structure evolves with time: instability in positions
 - Small uncertainty in the overall frame motion due to galactic acceleration ($\sigma \sim 0.5$ uas yr⁻¹)

UCI

REFERENCE FRAME DEGRADATION

- Primary system materialization: QSOs
 - QSOs are not really point sources; they do have structure after enough resolution is reached
 - and this structure evolves with time: instability in positions
 - Small uncertainty in the overall frame motion due to galactic acceleration ($\sigma \sim 0.5$ uas yr⁻¹)
- The most accessible system materialization: stars

- Primary system materialization: QSOs
 - QSOs are not really point sources; they do have structure after enough resolution is reached
 - and this structure evolves with time: instability in positions
 - Small uncertainty in the overall frame motion due to galactic acceleration ($\sigma \sim 0.5$ uas yr⁻¹)
- The most accessible system materialization: stars
 - Need to propagate the stars to the epoch of observations

- Primary system materialization: QSOs
 - QSOs are not really point sources; they do have structure after enough resolution is reached
 - and this structure evolves with time: instability in positions
 - Small uncertainty in the overall frame motion due to galactic acceleration ($\sigma \sim 0.5$ uas yr⁻¹)
- The most accessible system materialization: stars
 - Need to propagate the stars to the epoch of observations
 - But proper motions are uncertain! So for large t,

Brown et al., 2017 (Gaia Mission Extension)

SOME DIFFERENTIAL ASTROMETRY CHALLENGES FOR PLANETS

SOME INSTRUMENT STABILITY ISSUES

SOME INSTRUMENT STABILITY ISSUES

UCI

SOME INSTRUMENT STABILITY ISSUES

UCI

UCI

SOME INSTRUMENT STABILITY ISSUES

SOME INSTRUMENT STABILITY ISSUES

UC

SOME DIFFERENTIAL ASTROMETRY CHALLENGES FOR PLANETS

UCI

PHYSICAL MODELLING

- > Stochastic time-variable GW effects: **fundamental limitation**?
 - Apparent astrometric oscillations

Moore et al., 2017 (Phys. Rev. Lett. 119) see also Klioner, 2018 (Classical and Quantum Gravity, 35)

PHYSICAL MODELLING

- > Stochastic time-variable GW effects: fundamental limitation?
 - Apparent astrometric oscillations

Alberto Krone-Martins

UCI

SOME DIFFERENTIAL ASTROMETRY CHALLENGES FOR PLANETS

PHISICAL MUDELLING

METHODOLOGY

BREAKING MODEL DEGENERACIES, GOING DEEPER IN THE NOISE

UCI

In this short talk...

What and why?

Challenges?

The future?

2022 Sagan Summer Workshop

SOME DIFFERENTIAL ASTROMETRY CHALLENGES FOR PLANETS

FRAME AGES AND DEGRADES : FUTURE GLOBAL SPACE STROMETRY MISSIONS AS GAIANIR ARE VITAL TO ASTRONOMY
BETTER DESIGN (MATERIALS, OPERATIONS)
BETTER MONITORING (ON BOARD METROLOGY SYSTEMS PM)
AT THE SUB-MAS REGIME: GRAVITATIONAL EFFECTS
DEPENDING ON FOV AND MISSION PROFILE
REAKING MODEL DEGENERACIES, GOING DEEP IN THE NOISE
MATHEMATICAL + COMPUTER SCIENCE KNOWLEDGE

2020

2030

2040

Relative "large" FoV

JASMINE

+ Non dedicated missions that can (and hopefully will) do relative astrometry as Roman, Euclid, etc.

CHES

Theia

TOLIMAN

Relative **Diffraction-based** or interferometric

AGP

THEIA MAJOR SCIENCE CASES

- To probe small-scale properties of Dark Matter
- To reliably probe the shape of MW DM halo
- To detect and study habitable exo-Earths around nearby FGK stars unambigously and to probe their planetary system architectures
- Significantly improve the knowledge of Neutron Star EOS and of matter around Black Holes
- Micro-arcsecond astromery dead-time due to stabilization dedicated to photometry

arXiv:1707.01348

THEIA MAJOR SCIENCE CASES

- Measure true mass function of temperate 1–5 M⊕ rocky planets around solar-type stars
- Study the three-dimensional architecture of FGK systems harboring telluric planets
- Provide input target lists of stars with telluric planets for direct-imaging / spectroscopic missions aimed at searching for atmospheric biomarkers.

THEIA PROPOSAL

Alessandro Sozzetti INAF - Osservatorio Astrofisico di Torino, Italy

Fabien Malbet *Université de Grenoble Alpes/CNRS/IPAG, France*

Lucas Labadie Universität zu Köln, Germany

Theia core team

- Additional contributions from Austria, Denmark, The Netherlands and Poland.
- Participants from several countries outside Europe: Australia, Israel and USA ("non-enabling" contribution). Several countries have expressed their interests
- In M5 proposal : 22 countries, 209 researchers

Europe

Antonio Amorim (Universidade de Lisboa, CENTRA, Portugal) Guillem Anglada-Escudé (ICE CSIC, Spain) Alexis Brandeker (Stockholm University, Sweden) Enzo Brocato (INAF - Osservatorio Astronomico d'Abruzzo, Italy) Lars Buchhave (National Space Institute & Niels Bohr Institute, Denmark) Deborah Busonero (INAF - Osservatorio Astrofisico di Torino, Italy) Silvano Desidera (INAF - Osservatorio Astronomico di Padova, Italy) Antonaldo Diaferio (Universitá degli Studi di Torino, Italy) Luca Fossati (OEAW, Austria) Mario Gai (INAF - Osservatorio Astrofisico di Torino, Italy) Juan Garcia-Bellido (Universidad Autónoma de Madrid, Spain) Manuel Güdel (University of Vienna, Austria) Berry Holl (Geneva Observatory, Switzerland) Markus Janson (Stockholm University, Sweden) Anne-Marie Lagrange (Université de Grenoble Alpes/CNRS/IPAG, France) Mario Gilberto Lattanzi (INAF - Osservatorio Astrofisico di Torino, Italy) Alain Leger (IAS-CNRS, France) Gary Mamon (IAP [Sorbonne U. & CNRS], Paris, France)

Nadege Meunier (Université de Grenoble Alpes/CNRS/IPAG, France) André Moitinho (CENTRA, Universidade de Lisboa, Portugal) Sascha Quanz (ETH-Zurich, Switzerland) Rafael Rebolo (Instituto de Astrofisica de Canarias, Spain) Alberto Riva (INAF - Osservatorio Astrofisico di Torino, Italy) Ignas Snellen (Leiden, Netherlands) Andrzej Udalski (Warsaw University, Poland) Eva Villaver (Universidad Autónoma de Madrid, Spain)

Outside Europe

Céline Boehm (University of Sydney, Australia) Renaud Goullioud (JPL/NASA, USA) Alberto Krone-Martins (University of California, Irvine, USA) Tom Maccarone (Texas Tech University, USA) Barbara McArthur (University of Texas at Austin, USA) Adi Nusser (Technion - Israel Institute of Technology,Israel) Michael Shao (JPL/NASA, USA)

THEIA: INSTRUMENT STABILITY AND MONITORING CONCEPT

INSTRUMENT STABILITY

SIMPLE OPTICAL SYSTEM, LOW CTE AND WELL UNDERSTOOD MATERIALS, ALMOST NO MOVING PARTS

METROLOGICAL SYSTEMS (SUB-UAS)

CALLIBRATION (UAS)

MULTIPLE THERMAL MONITORING POINTS

THEIA: INSTRUMENT STABILITY AND MONITORING CONCEPT

INSTRUMENT STABILITY

SIMPLE OPTICAL SYSTEM, LOW CTE AND WELL UNDERSTOOD MATERIALS, ALMOST NO MOVING PARTS

UCI

THEIA: SIMPLE OPTICAL SYSTEM

- M2 to Fold: d=1477mm - Fold to M3: d=488mm

reflection on M3).

- Field of View: 0.5x0.5deg square

- M3: 180x180mm square CA, R=661.7mm, C=-0.6391

- Field of View bias: 0.45deg (in order for the light beam to avoid the plane mirror after

Surface:	IMA							
				Spo	ot Diag	gram		
19/07/2022 Units are µm. Field : RMS radius : GEO radius : Scale bar : 40	Airy Radiu 1 2 1.880 4.831 5.820 10.979 Reference	s: 10.84 µm. 3 4.903 2 10.786 6 • Chief Ray	Legend items r 4 5 2.074 2.144 5.156 6.347	efer to Wa 6 3.484 8.111	velengths 7 1.608 4.187	8 1.637 4.193	9 2.102 6.354	Zemax Zemax OpticStudio 22.2
Scare bar 1 is	Ner er en ee	. enter hay						Theia.zmx Configuration 1 of 1

Labadie et al., to appear in SPIE 2022

UCI

THEIA: INSTRUMENT STABILITY AND MONITORING CONCEPT

Korsch on-axis TMA 0.8m primary mirror EFL 32m Optics: <u>Zerodur</u>, ULE or Sitall Structures: <u>SiC</u> or Si3N4 Rigid Hexapod configuration

Lifetime : 4yr (built considering 8 yrs)

arXiv:1707.01348

THEIA: INSTRUMENT STABILITY AND MONITORING CONCEPT

INSTRUMENT STABILITY

SIMPLE OPTICAL SYSTEM, LOW CTE AND WELL UNDERSTOOD MATERIALS, ALMOST NO MOVING PARTS

METROLOGICAL SYSTEMS (FOR SUB-UAS)

TELESCOPE STRUCTURE METROLOGY

FOCAL PLANE METROLOGY

THEIA: INSTRUMENT STABILITY AND MONITORING CONCEPT

Independent linear interferometers : continously monitoring instrument changes during the lifetime of the mission for corrections on ground.

arXiv:1707.01348

UCI

THEIA: INSTRUMENT STABILITY AND MONITORING CONCEPT

Independent linear interferometers : monitoring for corrections on ground.

arXiv:1707.01348

THEIA: INSTRUMENT STABILITY AND MONITORING CONCEPT

Overview of a possible payload

arXiv

THEIA: INSTRUMENT STABILITY AND MONITORING CONCEPT

Interferometric FPA callibration Prototype @ IPAG reaches ~5x10⁻⁵ pixel size

2022 Sagan Summer Workshop

THEIA: INSTRUMENT STABILITY AND MONITORING CONCEPT

arXiv:1707.01348

2022 Sagan Summer Workshop

THEIA: INSTRUMENT STABILITY AND MONITORING CONCEPT

arXiv:1707.01348

2022 Sagan Summer Workshop

THEIA EXOPLANET CASE

 Nearby telluric planets in the HZ of AFGKM stars

arXiv:1707.01348

Differential astrometry: relative measurements

Differential astrometry: relative measurements

Measurement precision depends on: instrument stability and/or monitoring and callibration

Differential astrometry: relative measurements

Measurement precision depends on: instrument stability and/or monitoring and callibration

Relative to absolute transformation depends on some external Reference Frame that degrades with age

Differential astrometry: relative measurements

Measurement precision depends on: instrument stability and/or monitoring and callibration

Relative to absolute transformation depends on some external Reference Frame that degrades with age

Exciting concepts are being proposed for dedicated micro-arcsecond relative astrometry missions to study faint objects and telluric planets in Habitable Zones of nearby stars

2022 Sagan Summer Workshop

Alberto Krone-Martins

2022 Sagan Summer Workshop

DIFFERENTIAL ASTROMETRY FOR EARTHS AT MICRO-ARCSECOND PRECISION

THEIA EXOPLANET CASE

Alberto Krone-Martins

Results of a recent blind test on Theia targets, including the expected stellar activity in the simulation but not accounting for them in the modelling

UCI

M5 Focal plane array

Detectors: -**FPA:** 24 e2V 4k² CCD -**WFS**: 4 e2V 4k² CCD

New large detectors with small pixels !

Large detector arrays starting in 2016 thanks to the stitching technology Pixels of ~4µm => array of 12 cm x 12 cm can be manufactured on a wafer of 12'' (300mm)

SONY IMX411 BSI 150MP

11648 x 8542

[43.8 x 32.87 mm]

GIGAPYX 4600

46 Megapixel, BSI Rolling Shutter High Speed HDR CMOS image sensor

GIGAPYX is a family of large image sensors designed for those applications that demands the best of image quality CMOS sensor has to offer. Manufactured using the most advanced CIS technologies available, it offers low noise, sensitivity, intra-scene dynamic range, resolution and frame rate with no compromises. Ranging from the optical 1.5" format (14 x 18 mm²) up to 6x6 and 6x7 Medium-formats (73 x 58 mm²), this family of sensor is compliant with the major large scale optical formats of high quality applications. GIGAPYX 4600 is the first release of this family of sensors: it is a Full-Frame (35 mm) sensor, with 46 Megapixels. The device operates in Rolling-Shutter, up to 150 frames per second with 12 bits per pixel acquisition mode at full resolution, and up to 200 FPS with 8K format (8320 x 4320). The sensor provides up to 92 dB intra-scene dynamic-range thanks to in-pixel true HDR (linear output, single shot acquisition).

_		Data Data Data Data	eran eran eran eran eran	DTERSTERN DIRECTORY	Energy Energy Distance Distanc	The second second
		Territor March	Terrature MEC	Terrative MEC	Terretor HULC	
	1	EMER Digital processing Emerican BAR BAL BALL	EMER Digital processing Emergin BER BER BER BER	Entern Digital processing Family Bits Bits Bits Bits	ELEVE Digital processing Family ELEVE DEL DELLE DELLE	Temperature sensor
	Tap Left Analog regbark		AUT CARE AND AND A AND A AND A			tung
	-	Excitor references	Exercic references	Extension references	Biotrical references	
pri-tons	in bude	BackA Pixel array	Binck A Pixel Array	BuckA Pool array	ElockA Pixel array	Une Decoder
Red1-14	in bander	Biackin. Picel samp	BischA Pixel array	BischA Pixel array	Biochia Picel array	Line Deceder
Rooth-144	Long Decoder	Biacka. Pixel array	Biackis Pixel array	Eiseka. Pisel array	Elocka Pixel array	Sire Decader
Root - Law	ana Ceinder	Black A. Pixel array	BlackA Pixel terray	Biakki. Pixel kerny	ElockA Pixel array	Erre Deceder
Med 8-Lah	in buode	BlackA Pixel terray	BlackA Pixel brog	BiockA Pixel terray	BlockA Pixel array	Line Deceder
		Exchange references	Extend otherward	Extend references	Bachrical references	
80% N 92,998 190 01,1		AND ON OTHER	AND DEC AND DEC	AND COMPANY AND COMPANY	ALT CRAS	Raing
MOR MED SPLBARY						Senator
gritter infr Curi, Mar	fed D- het Left	Ternatinage	Termitimage	Terration BLC	Terratinage	Analog regbank
		Deni Deni Deni Deni Deni	DRVID CRUID DRVVD DRVVD CURD	CALEN CALENCE CALENCE CALENCE	CONST. CONST. CONST. CONST. CURM. CURM.	

Make your own GigaPYX sensor

- GigaPYX is manufactured using stitching technology
 By combining multiple blocks of pixels and readout, Pyxalis can manufacture the right dimension you need for your application.
- All GigaPYX family members will share the same electrooptical performances, and the same readout and addressing method
- this allows you to offer a range of cameras with consistent performance and image signature while leveraging electronic design efforts across multiple products.

GIGAPYX Family	Format	# of block A Along X axis	# of block A Along Y axis	Matrix sizes in mm Width x Height	Die sizes in mm Width x Height	# of data Lane + clock
GIGA46M	35 mm Full-frame	4	5	36.6 x 24.2	39 x 38.2	128 + 16
GIGA37M		4	4	36.6 x 19.4	39 x 33.4	128 + 16
GIGA110M		6	8	54.9 x 38.7	57.3 x 52.7	192 + 24
GIGA82M	65 mm	6	6	54.9 x 29	57.3 x 43	192 + 24
GIGA80M		5	7	45.8 x 33.9	48.2 x 47.9	160 + 20
GIGA27M	Super 35 mm	3	4	27.5 x 19.4	29.9 x 33.4	96 + 12
GIGA14M		2	3	18.3 x 14.5	20.7 x 28.5	64 + 8
GIGA151M	65 mm square	6	11	54.9 x 53.2	57.3 x 67.2	192 + 24
GIGA220M	Max size	8	12	73.2 x 58.1	75.6 x 72.1	256 + 32

Detector Interferometric Calibration Experiment (DICE)

Crouzier et al. 2016, A&A 595, A108

DIFFERENTIAL ASTROMETRY FOR EARTHS AT MICRO-ARCSECOND PRECISION

Laboratory results

Best results so far:

- JPL/VESTA: 10-4 pixels
- IPAG/CNES: 6 10⁻⁵ pixels (Crouzier et al. 2016)

Proposed strategy to reach 10⁻⁵ pixel calibration:

100 independent positions, a space of \sim 40 \times 40 pixels for Nyquist-sampled centroids

14

DIFFERENTIAL ASTROMETRY FOR EARTHS AT MICRO-ARCSECOND PRECISION

Mission profile

- ESA-led, ESA-operated mission with consortium funded payload (this is the normal type of ESA mission)
- Submitted for the ESA M7 call as an Ariane 6.02 launch
- Spacecraft dry mass with margin: 1063 kg. Total launch Mass: 1325 kg

L2 Transfer and commissioning (6 months) L2 Transfer and (6 months)	Decommissioning
---	-----------------

Launch date	No constraints, allowing launch date in 2037
Orbit	Large Lissajous in L2
Lifetime	 4 years of nominal science operations Tecnical operations: 6 months orbit transfer plus instrument commisioning and 1 month decomissioning
Concept	Single spacecraft, single telescope in the PLM, single camera in the focal plane, metrological monitoring of PLM
Communication architecture	75 Mbps, 4h/day

15

TRL evaluation and foreseen development plans for the Theia payload

Technology Item	Heritage or Comments	Current TRL	Foreseen TRL by end of Phase A (2026)	Development plans for the baseline design	
Camera detectors	Option 1) several 50-150 Mpixels CMOS (Sony IMX411, Pyxalis	4-5	6	Option 1) Performance demonstrated for the	
	GP4600). Current baseline.	-		operational environment. Flight model qualified for	
	Option 2) A single new gigapixel visible CMOS (30k x 30k). Desired	3	5	nanosat with a smaller format (50Mpixels). Option 1	
Comoro electronico	OPtion. CMOS TDI platform product familios for line scapping in Earth	6		will require a 2x2 GP4600 mosaic for the FPA or small	
camera electronics	observation	0	8	reduction of science.	
Camera system	Options 1) 2x2 detector array or single detector if FOV reduction	7	8.0	Option 2) Simpler system solution as only one detector	
	is scientifically acceptable.		0-9	is implemented, but further test of the detector chip	
	Option 2) a single sensor and electronics. Implemented in Earth	7	8-0	must be performed	
	observation		8-3		
Camera WFS	Gaia. But modifications to fit Theia optics are necessary.	6-9	6-9	Use of the corner of the gigapixel detector	
FPA metrology laser source	Meteosat Third Generation (MTG)	9	9		
FPA metrology optical components	High NA single/multimode fibers required and commercially	5		Work on radiation hardening data with companies like	
	available on ground. Space qualification is being addressed by			Nufern. Data on Gamma and Proton irradiation exist	
	fiber manufacturers.		6-7	(Alam 2006, SPIE 6308, 630808)	
FPA metrology electronics	Laboratory benches.	4			
FPA metrology system	Laboratory benches, but not yet for Theia FPA scale.	4		caloratory work to esecit of PPA caloration	
Telescope metrology laser source	Tesat LISA, MTG.	9	9		
Telescope metrology picometer	Interferometers performing at the level required by Theia already	5		Independent active actuators (piezo) coupled to standard nm laser metrology to maintain position.	
interferometers	flying (Gaia-BAM).				
Telescope metrology electronics	Based on Actel RTG4 and Gooch & Housego.	5	1	However, TMA design with gigapixel array (Option 1 &	
and optoelectronics components			5-6	will relax the needs for metrology of the telescope	
			5-0	structure considering few tens of mK environmental	
Telescope metrology system	Each actuator with its own metrology at TRL >5.	4	1	alternative design with only one mirror (Formation	
				Flying, deployable boom).	
Telescope structure	Ceramics telescopes have been used in Herschel, Gaia, Euclid.	9	9		
Telescope optics	Several flying TMA. Design similar to Euclid. Straylight needs	5	8	Laboratory tests and optical design analysis	
	assessment.				
Thermal control system	Euclid, Ariel	6-7	8	Optimize V-groove passive cooling configuration	
Fine Guidance Sensor	Euclid Ariol	67	0	Coupled to e.g. active if coolers	
rine Suluance Sensor	Eucliu, Anel	0-7	0	Similar to existing ros designs	