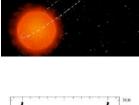
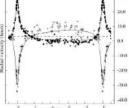
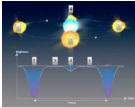

Gaia Exoplanet Survey: The (Start of the) Astrometry Revolution


A. Sozzetti INAF - Osservatorio Astrofisico di Torino



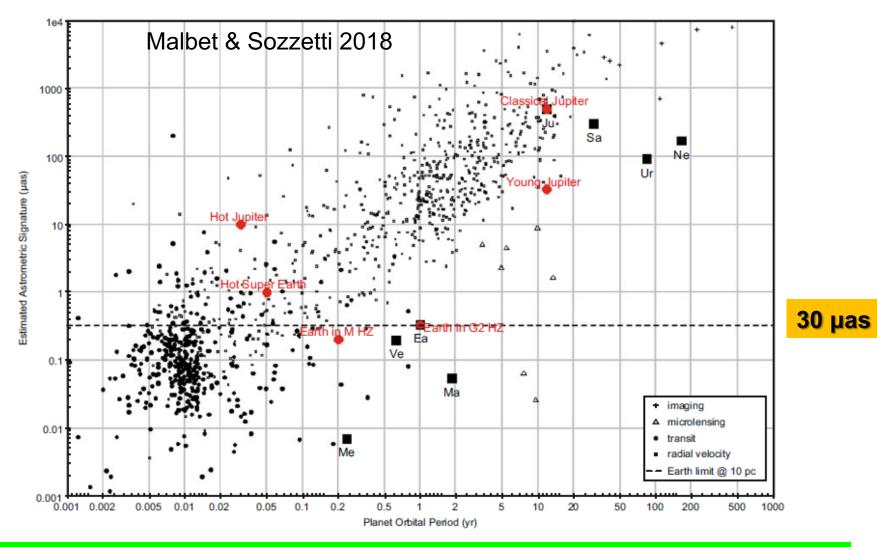



...Dimitri

Exoplanet science in the Gaia era (ssw 2022)

Gaia Discovery Space

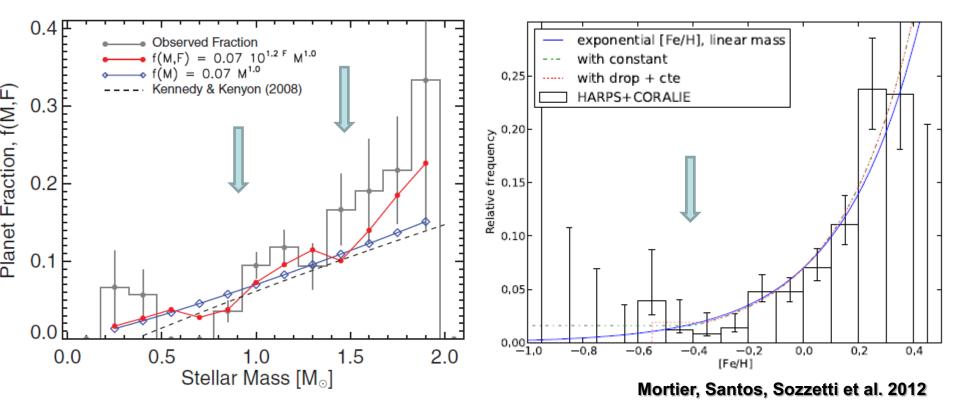
Unbiased, magnitude-limited planet census of maybe 10⁶-10⁷ stars


>10⁴ NEW gas giants (< 15 M_{JUP}) around A through M dwarfs <u>Numbers might</u> <u>as much as triple</u> for a 10-yr mission

Lattanzi et al. 2000, Sozzetti et al.2001 Casertano et al. 2008 Perryman et al. 2014 Sozzetti et al. 2014 Sahlmann et al. 2015

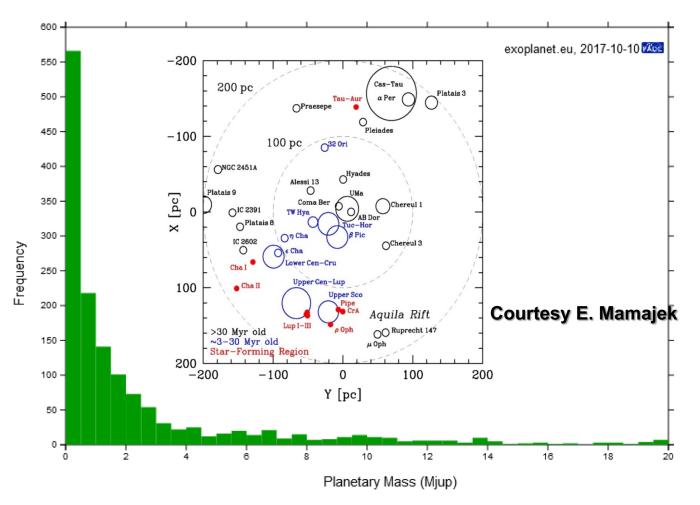
Gaia will test the fine structure of GP parameters distributions and frequencies (including the GP/BD transition), and investigate their changes as a function of stellar mass, metallicity, age, and multiplicity with unprecedented resolution

Gaia & Known Planets



Maybe 50% of known companions accessible to Gaia for true mass estimation
MOST exoplanets found by Gaia around bright stars good for RV follow-up

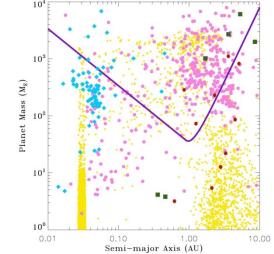
Gaia: 10⁴ stars in a bin! Today: 10² stars in a bin!


Johnson et al. 2010

How do giant planet frequencies, masses, orbits depend on the host stars' properties?

Exoplanet science in the Gaia era (ssw 2022)

gaia


 Unique exploration of the GP/BD transition region of companions to (1000?) young stars (<200 pc) in a regime of separations mostly inaccesible to DI
 Systematic improvement of DI-detected companions via detection of astrometric accelerations: that's another great synergy!

Gaia & UCD Planets

- Found so far only in microlensing events
 Gaia will see ~1000 UCDs of all ages,
 with sufficient astrometric sensitivity to
 giant planets within 2-3 AU
- A fundamental test of planet formation!

Gaia & Post-MS Stars Sozzetti 2014

- Gaia might be sensitive to massive planet around thousands of bright White Dwarfs
- Gaia will perform THE observational test of theoretical predictions related to:
- A) post-MS planet evolution &
- B) <u>2nd generation planet formation</u>

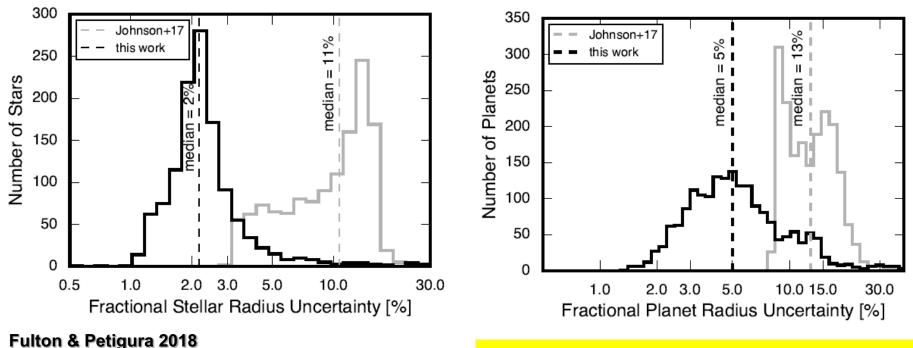
	D<100	D<200
	рс	рс
G<13	50	400
G<14	200	1600
G<15	800	6400

Silvotti, Sozzetti et al. 2015

Gaia DR2 & EDR3:

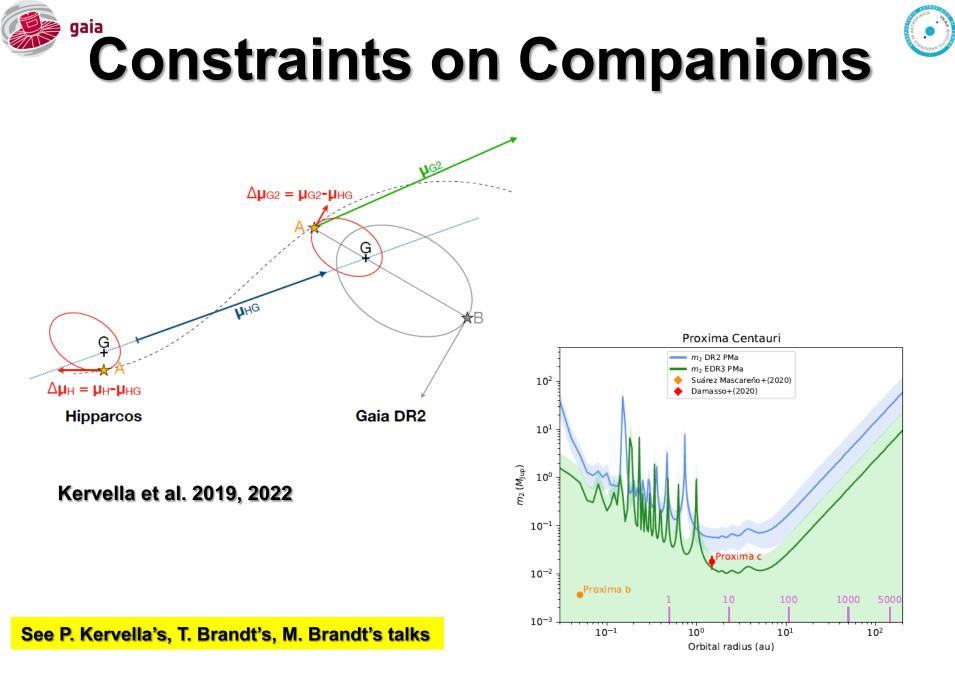
No direct binarity information

...Any Exoplanet Science with DR2/EDR3?


YES!

Exoplanet science in the Gaia era (ssw 2022)

Take Gaia parallaxes, and then do it your way!


DR2/EDR3:

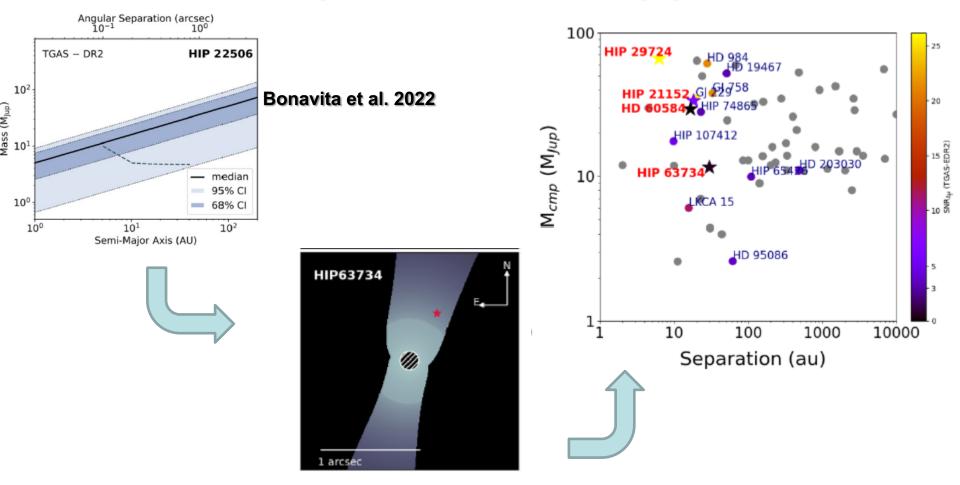
Bright (V<13) F-G-K stars (D<300-400 pc) and not very faint (V<16) M dwarfs (D<50-60 pc) have distances determined to 5%, or better

Derive 'accurate' stellar (and planetary) radii to within 5% or better Much improved understanding of demographics (e.g., radius valley)

Exoplanet science in the Gaia era (ssw 2022)

Exoplanet science in the Gaia era (ssw 2022)

Dynamical Masses



Exoplanet science in the Gaia era (ssw 2022)

New Detections

Select accelerating stars for follow-up direct-imaging observations

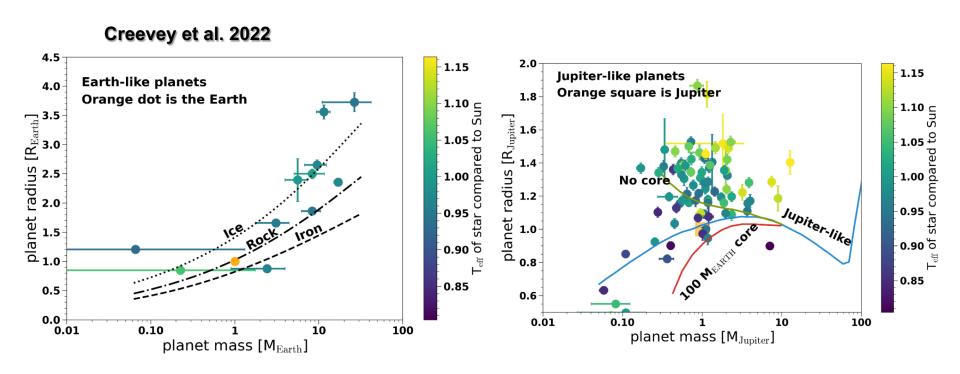
Increasing efficiency of identification of wide-orbit substellar companions!

Exoplanet science in the Gaia era (ssw 2022)

The π Mensae System

gaia

Star name	Epoch	$\Delta \mu_{\alpha}$ (mas yr ⁻¹)		μ_{δ} yr ⁻¹)	-	1.0				· · · ·	
π Men π Men	Hipparcos Gaia	$\begin{array}{c} 0.768 \pm 0.398 \\ 0.707 \pm 0.246 \end{array}$	0.404 - -0.739	± 0.445 ±0.263	-	0.8					-
Jump parameter	Prior	Best-fit value			-					.	-
ib [deg]	U(0.0, 180.0)	$47.9^{+1.1}_{-1.3}$			N/N _{MAX}	0.6				11	-
Ω_b [deg]	U(0.0, 360.0)	$104.1^{+0.6}_{-0.5}$			N.	L					-
Mass, $m_b [M_{Jup}]$	(derived)	$13.4_{-0.2}^{+0.3}$			Ŋ	0.4			o, al		-
$\cos i_{\rm rel} = \cos i_{\rm rel}$	$i_{\rm in} \cos i_{\rm out} + \sin i_{\rm out}$	$in i_{in} \sin i_{out} \cos i$	$(\Omega_{\rm out} -$	$\Omega_{in})$	_	-					-
$R_{\rm c}/R_{*}$	0	.0165±0.0001				0.2					_
$a_{\rm c}/R_{*}$		12.5±0.3				F					-
ic [deg]		87.05±0.15				0.0					
Eccentricity, eb		0.642±0.001				0		50	100	15	0
Argument of periastron,	, ω _{★, b} [deg]	-30.1±0.3	Dama	asso, S	Sozzetti e	t al. 20	20		I_{REL}		
T _{b, periastron} [BJD-2450	000]	8388.6±2.2		E							. 1
Minimum mass, <i>m</i> b sin i	ib [MJup]	9.89±0.25		300 E	-	<u></u>	6. 3				-
Orbital semi-major axis	, a _b [au]	3.28 ± 0.04		Ē				·.			1
Eccentricity, ec		0 (fixed)	deg	000E				·.			1
Argument of periastron,	, ω _{*, c} [deg]	90 (fixed)	(Ť	200	- Andreas (* 1986) Andreas (* 1986)	Katalan ba	Alto da tradición		·.		
Orbital semi-major axis	, a _c [au]	0.0680 ± 0.0008	Ω				i an		·		
Mass, $m_c [M_{\oplus}]$		4.3±0.7	G	100		an a					-
Radius, R_c [R $_{\oplus}$]		2.11±0.05		Ē	1997 - 1996 1997 - 1996 1997 - 1996			•			3
Average density, $\rho_c [g c]$	m^{-3}]	2.8±0.5		0 E							. 1
				0		50		100		150	
Exoplanet science in the Gaia era (ssw							I	b (deg)			


DR3: June 13th...

		# sources in Gaia DR3	# sources in Gaia DR2	# sources in Gaia D
Tot	tal number of sources	1,811,709,771	1,692,919,135	1,142,679,769
		Gaia Early Data Release 3		
Nu	mber of sources with full astrometry	1,467,744,818	1,331,909,727	2,057,050
	Number of 5-parameter sources	585,416,709		
	Number of 6-parameter sources	882,328,109		
Nu	mber of 2-parameter sources	343,964,953	361,009,408	1,140,622,719
Gai	a-CRF sources	1,614,173	556,869	2191
Sou	urces with mean G magnitude	1,806,254,432	1,692,919,135	1,142,679,769
Sou	urces with mean G _{BP} -band photometry	1,542,033,472	1,381,964,755	-
Sou	urces with mean G _{RP} -band photometry	1,554,997,939	1,383,551,713	-
		New in Gaia Data Release 3	Gaia DR2	Gaia DR1
Sou	urces with radial velocities	33,812,183	7,224,631	-
	urces with mean G _{RVS} -band magnitudes	32,232,187	-	-
Sou	urces with rotational velocities	3,524,677	-	-
	an BP/RP spectra	219,197,643	-	-
Me	an RVS spectra	999,645	-	-
	iable-source analysis	10,509,536	550,737	3,194
	iability types (supervised machine learning)	24	6	2
Sup	pervised machine-learning classification for variables	9,976,881	390,449	3,194
Spe	ecific Object Studies – Cepheids	15,021	9,575	599
Spe	ecific Object Studies – Compact companions	6,306	-	-
Spe	ecific Object Studies – Eclipsing binaries	2,184,477	-	-
Spe	ecific Object Studies – Long-period variables	1,720,588	89,617	-
Spe	ecific Obiect Studies – Microlensing events	363	-	-
Spe	ecific Object Studies – Planetary transits	214	-	-
Spe	ecific Object Studies – RR Lyrae stars	271,779	140,784	2,595
Spe	ecific Object Studies – Short-timescale variables	471,679	3,018	-
Spe	ecific Object Studies – Solar-like rotational modulation variables	474,026	147,535	-
Spe	ecific Object Studies – Upper-main-sequence oscillators	54,476	-	-
Spe	ecific Object Studies – Active galactic nuclei	872,228	-	-
Pho	otometrically-variable sources with radial-velocity time series	1,898	-	-
Sou	urces with object classifications	1,590,760,469	-	-
Sta	rs with emission-line classifications	57,511	-	-
Sou	urces with astrophysical parameters from BP/RP spectra	470,759,263	161,497,595	-
	urces with astrophysical parameters assuming an unresolved binary	348,711,151	-	-
	urces with spectral types	217,982,837	-	-
	urces with evolutionary parameters (mass and age)	128,611,111	-	-
	stars with spectroscopic parameters	2,382,015	-	-
	ra-cool stars	94,158	-	-
	ol stars with activity index	1,349,499	-	-
	urces with H-alpha emission measurements	235,384,119	-	-
	urces with astrophysical parameters from RVS spectra	5,591,594	-	-
	urces with chemical abundances from RVS spectra (up to 13 species)	2,513,593	-	-
	urces with a diffuse interstellar band (DIB) in their RVS spectrum	472,584	-	-
	n-single stars (astrometric, spectroscopic, eclipsing, orbits, trends)	813,687	-	-
	n-single stars (ascometric solutions	169,227	-	-
	n-single stars - orbital ascornectic solutions (SB1 / SB2)	186,905	-	-
	n-single stars - orbital specific solutions (SD17 SD27	87,073	-	-
	O candidates	6,649,162	-	-
	0 candidates - redshifts	6,375,063	-	-
-	O candidates - host galaxy detected	64,498	-	
_	O candidates - host galaxy surface brightness profiles	15,867	-	
	axy candidates		-	-
		4,842,342	-	
	axy candidates - redshifts axy candidates - surface brightness profiles	1,367,153	-	-
		914,837		-
	ar system objects	158,152	14,099	
	ar system objects - epoch astrometry (CCD transits)	23,336,467	-	-
	ar system objects - orbits	154,787	-	-
	ar system objects - average BP/RP reflectance spectra	60,518	-	-
	ar system objects - planetary satellites	31	-	-
	sky total galactic extinction maps at different spatial resolutions	HEALPix levels 6, 7, 8, and 9	-	-
	a Andromeda Photometric Survey (GAPS) with lightcurves for all objects	1,257,319	-	-

Exoplanet science in the Gaia e

- A Golden Sample of sources with Gaia-based solid astrophysical parameters
- Transiting planets masses and radii are re-calibrated

Exoplanet science in the Gaia era (ssw 2022)

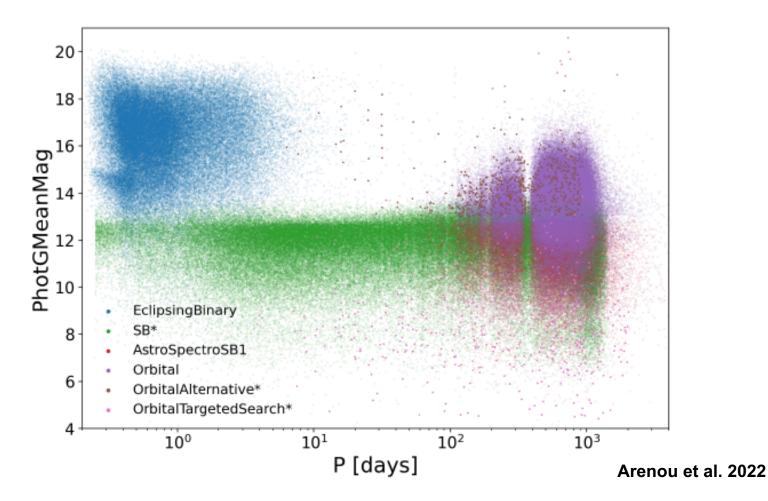
Courtesy: P.Panuzzo

DR3 CU4 NSS Products

Gaia Collaboration (Arenou) et al. 2022

Table	Solution type	Solutions	Description			
nss_acceleration_astro	Acceleration7	246 947	Second derivatives of position (acceleration)			
	Acceleration9	91 268	Third derivatives of position (jerk)			
nss_two_body_orbit Orbital 13459		134 598	Orbital astrometric solutions			
	OrbitalAlternative*	629	Orbital astrometric, alternative solutions			
	OrbitalTargetedSearch*	533	Orbital astrometric, supplementary external input list			
	AstroSpectroSB1	33 467	Combined orbital astrometric + spectroscopic solutions			
	SB1 or SB2	186 905	Orbital spectroscopic solutions			
	EclipsingSpectro	155	Combined orbital spectroscopic + eclipsing solutions			
	EclipsingBinary	86918	Eclipsing binaries			
nss_non_linear_spectro	FirstDegreeTrendSB1	24 083	First order derivatives of the radial velocity			
	SecondDegreeTrendSB1	32725	Second order derivatives of the radial velocity			
_nss_vim_fl	VIMF	870	Variable-induced movers fixed			

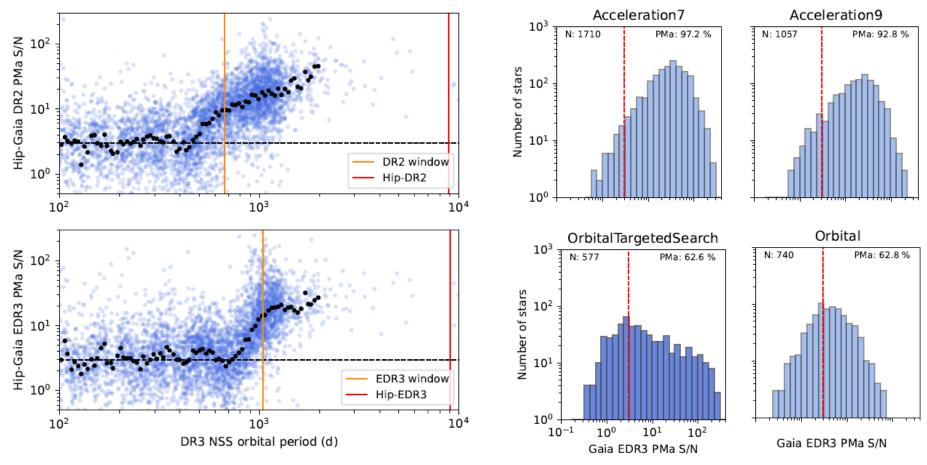
* Gaia identifies and characterizes orbiting companions through all its observing channels: Astrometry, Spectroscopy, and Photometry


- * As a consequence, many solution types are published in DR3
- * No information on multiplicity (> 1 companion) in DR3

See also **processing papers**: Halbwachs et al. 2022, **Holl, Sozzetti et al. 2022**, Gosset et al. 2022, Damerdji et al. 2022, Siopis et al. 2022 and <u>on-line documentation</u>: https://gea.esac.esa.int/archive/documentation/GDR3/index.html

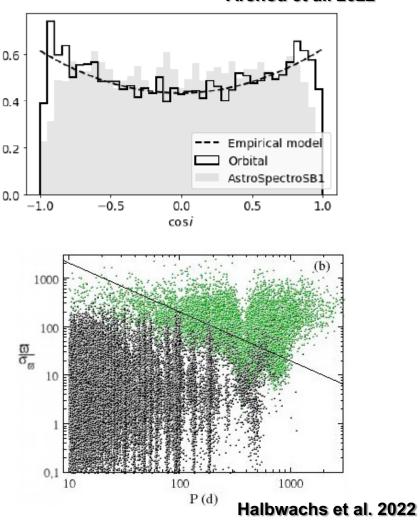
Statistics

* 45 times more spectroscopic orbits than in the SB9 Catalogue
* 300 times more astrometric binaries than in Orb6 Catalogue



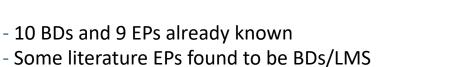
* Covering the entire HR diagram, including the White Dwarf sequence

Some of the good...


Arenou et al. 2022

Some of the bad...

- Huge validation effort necessary
- (In)Completeness and biases characterization
- Bad solutions identification:
 Some removed, some still present
- Caveats and recommendations for bad solutions filtering



An Orrery of (Astrometric) Orbits

Credits: J. Sahlmann

00000000	
• / • • • • •	
~ · / ~ OQ · / O · / · /	
ø 🔎 ø 🔍 🚱 🚱 🌒 🌒 🌒 🖉 🧶 🦻	
● ☜ ● 🌒 🔸 @ ☜⊘ ● 💧 ● 🕥	• \ • v • • • 0 • 0 • • 1 1 ()
💙 • • 🖉 • • • • • • • • • •	
• • • •	

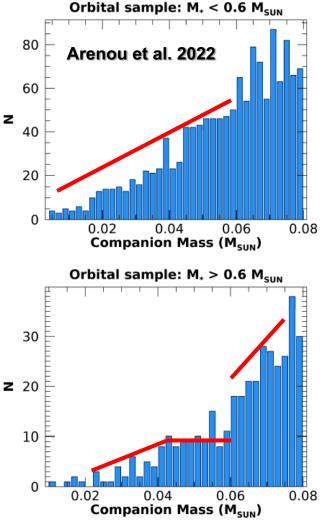
- 13 BD-BD binaries, 7 already known

* Spectroscopy: 6K SB1 with $M_2 sin(i) < 0.08 M_{SUN}$

* Astrometry: 1843 BDs and 72 EPs candidates

- Many are probably aliases of longer periods
- 10 candidate Exoplanets

gaia

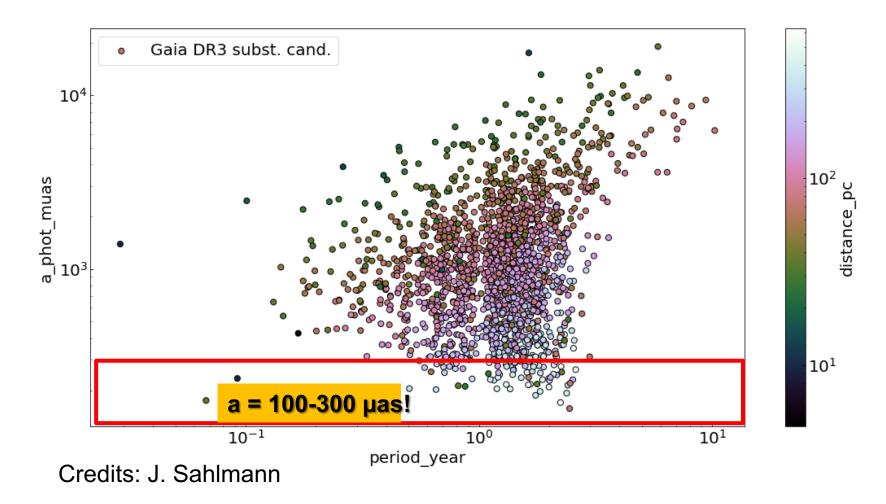

- One known transiting super-Jupiter correctly detected
- * Photometry: > 200 transiting exoplanet candidates,
 some 70 new.

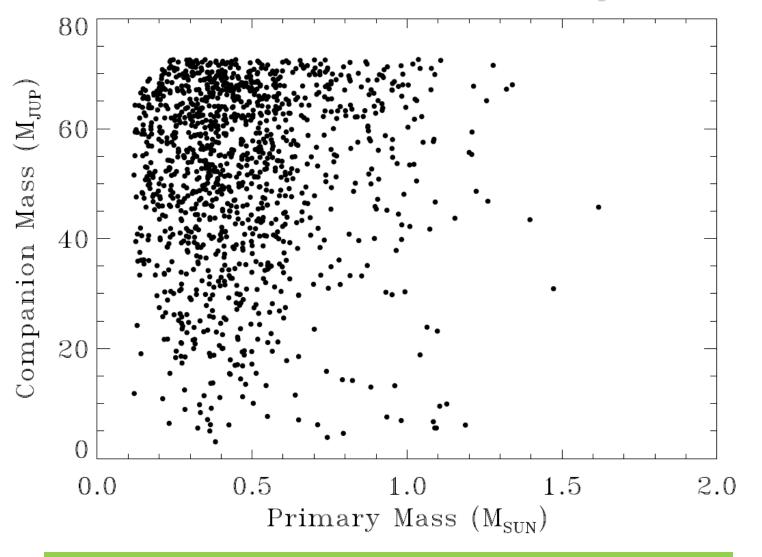
some 70 new.

* Gaia candidate exoplanet list: https://www.cosmos.esa.int/web/gaia/exoplanets * Gaia candidates now also in the Exoplanet Encyclopaedia: http://exoplanet.eu

Caltech, pasadena (USA), 27/07/2022

Substellar Companions



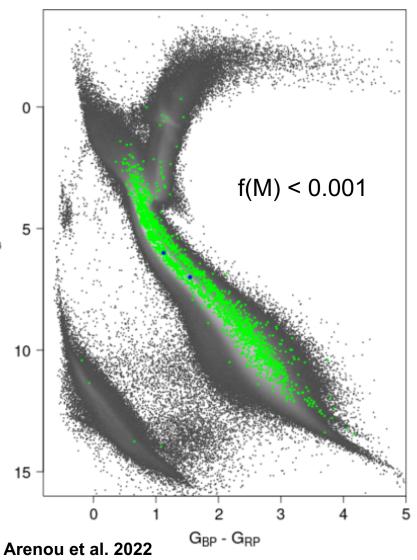

Gaia DR3 astrometry: substellar mass companions

Exoplanet science in the Gaia era (ssw 2022)

Hosts of Substellar Companions

Primarily found around low-mass M dwarfs

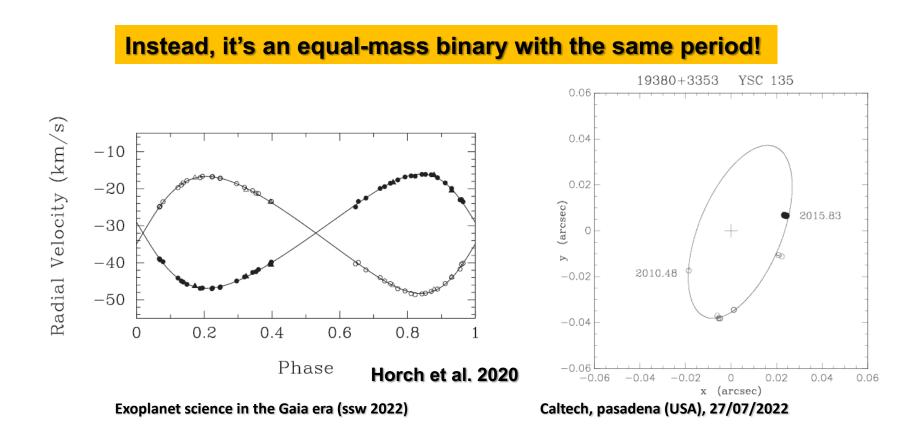
BD Companion Occurrence


- Solar-type hosts of BDs have <[M/H]> = -0.02+/-0.29
- This value is right on estimates from RV surveys, with nearby field stars being more metal-poor, and planet hosts being more metal-rich
- Assuming 100% completeness and reliability, we infer for the first time a 0.3% occurrence rate of BDs around M dwarfs (likely underestimated, but it's a first!)

• Masses from f(M):

$$(\mathcal{M}_1 + \mathcal{M}_2) \left(\frac{\mathcal{M}_2}{\mathcal{M}_1 + \mathcal{M}_2} - \frac{F_2/F_1}{1 + F_2/F_1} \right)^3 = \frac{(a_0/\varpi)^3}{(P/365.25)^2}$$

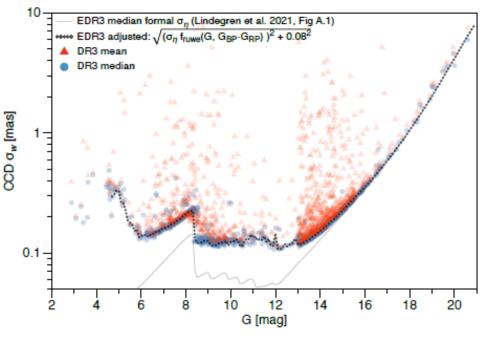
- Small f(M) -> Small M₂?
- Impostors: Binaries with $M_2/M_1 \approx F_2/F_1$



Gaia orbit:

- P = 450 d

- a₁ = 480 µas


As d=32.7 pc, $M_s = 0.90 M_{SUN}$, M_2 could be a super-Jupiter or low-mass brown dwarf

OrbitalTargetedSearch': Special Processing

- ≈20k sources with known solutions, including all exoplanets
- DE-MCMC and Genetic Algorithms for astrometric orbit determination
- Aim to probe the low astrometric SNR regime

Holl, Sozzetti et al. 2022

Orbit Fitting with Gaia (hands-on session)

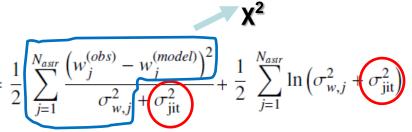
Single-star Model (fully linear):

 $w_{\rm ss} = (\Delta \alpha^{\star} + \mu_{\alpha^{\star}} t) \sin \psi + (\Delta \delta + \mu_{\delta} t) \cos \psi + \varpi f_{\varpi}$

NOTE: z is not used (known with much lower accuracy)

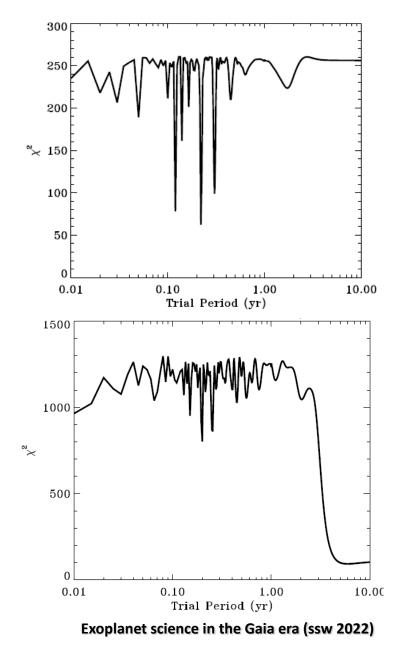
Keplerian Model (partly linear):

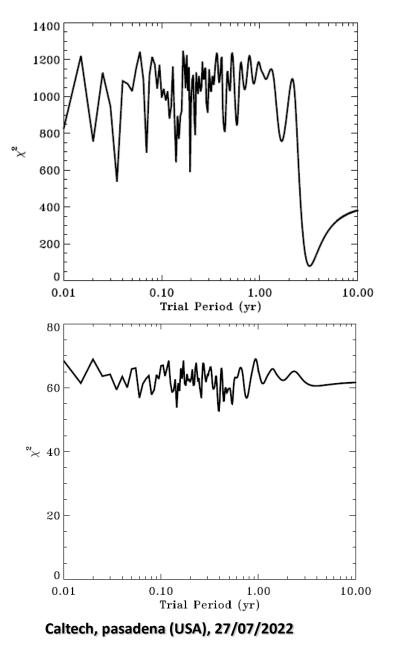
 $w_{k1} = (BX + GY)\sin\psi + (AX + FY)\cos\psi$

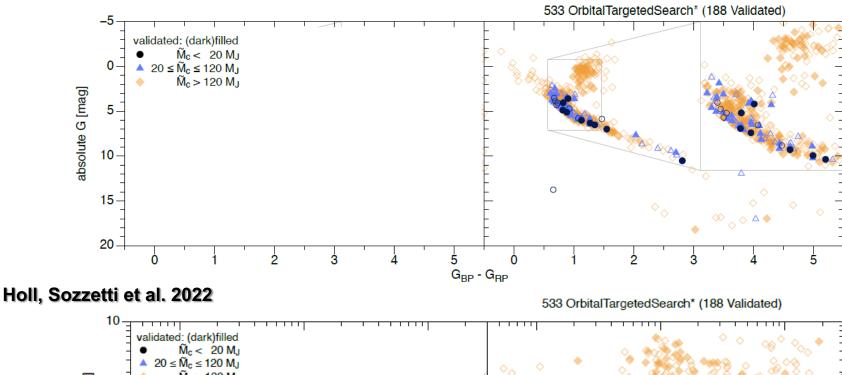

Linear component (Thiele-Innes elements):

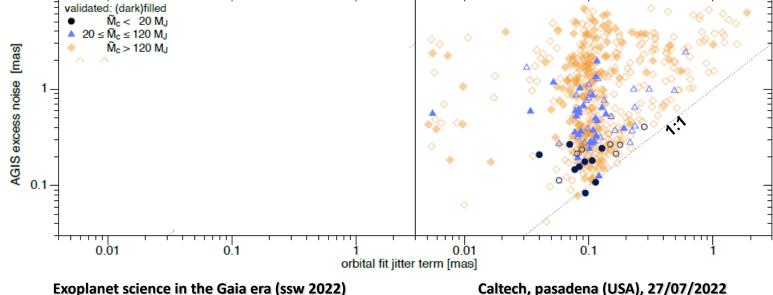
- $A = a_0 \left(\cos \omega \cos \Omega \sin \omega \sin \Omega \cos i \right)$
- $B = a_0 \left(\cos \omega \sin \Omega + \sin \omega \cos \Omega \cos i \right)$
- $F = -a_0 (\sin \omega \cos \Omega + \cos \omega \sin \Omega \cos i)$
- $G = -a_0 (\sin \omega \sin \Omega \cos \omega \cos \Omega \cos i)$
- **Full model:** $w^{(\text{model})} = w_{\text{ss}} + w_{k1}$

Figure of merit is the log-likelihood: $-\ln(\mathcal{L}) = \frac{1}{2}$

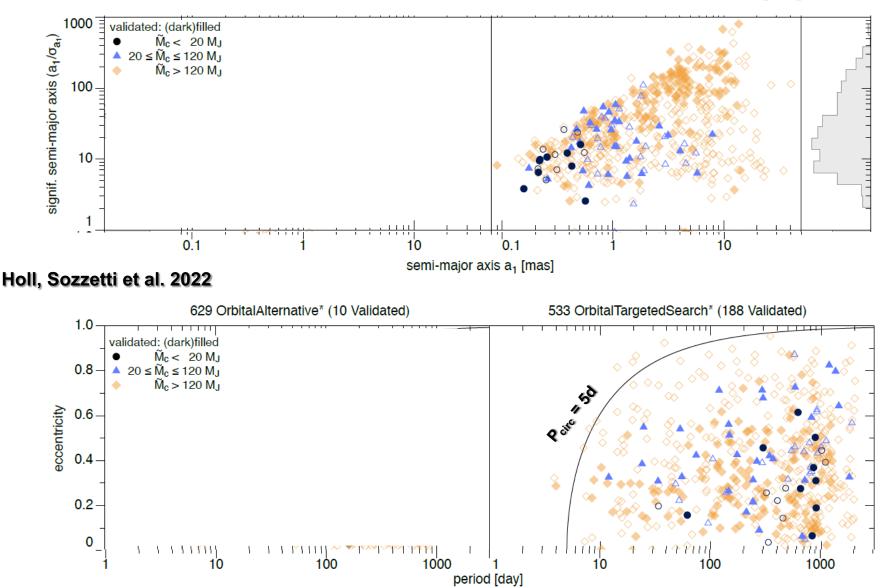

Non-linear component:


$$E - e \sin E = \frac{2\pi}{P}(t - T_0)$$
$$X = \cos E - e$$
$$Y = \sqrt{1 - e^2} \sin E$$

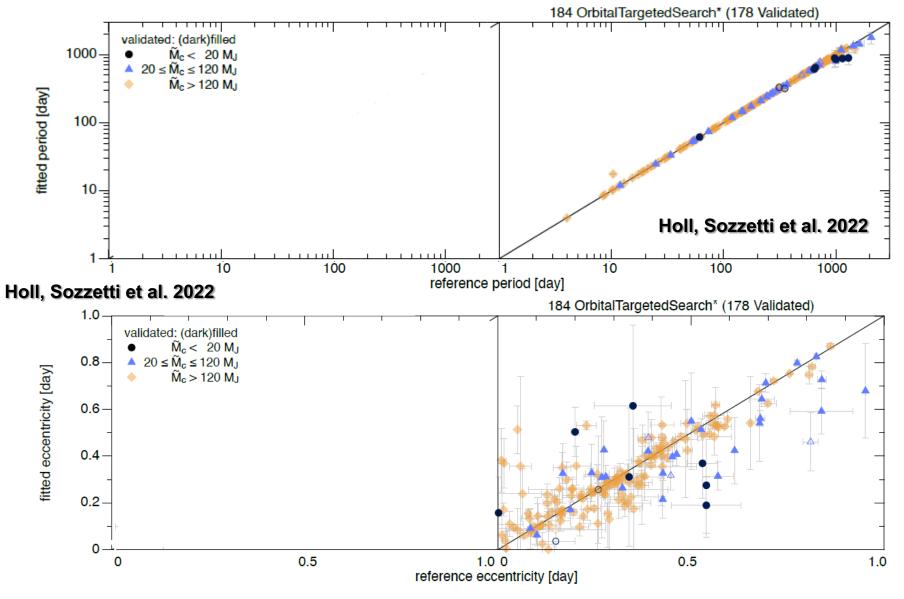

[•] Orbits with Gaia: Finding the Period 📀



Verification: Internal checks (1)


gaia

Verification: Internal checks (2)

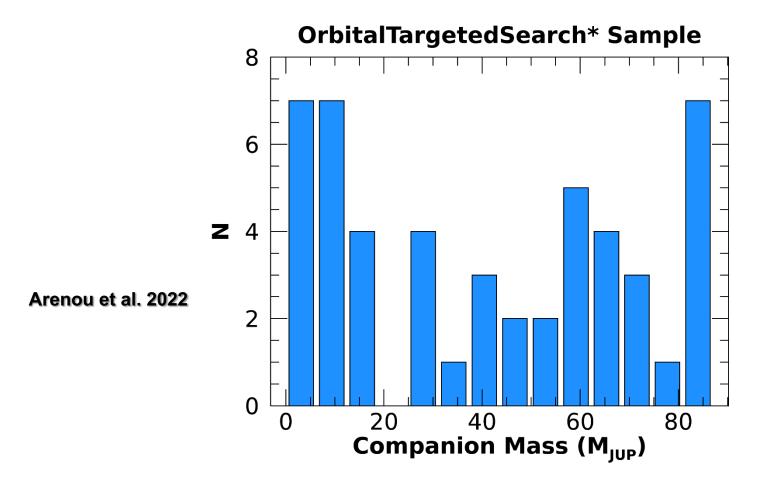


Exoplanet science in the Gaia era (ssw 2022)

Validation: Gaia vs. Literature

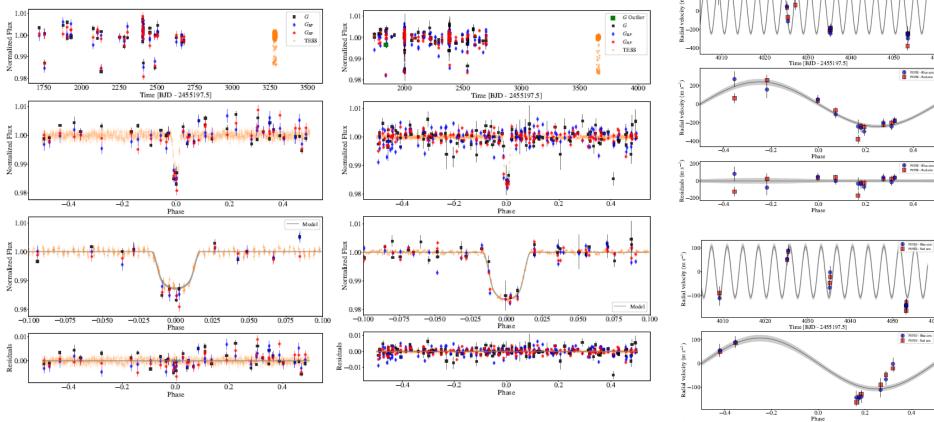
Exoplanet science in the Gaia era (ssw 2022)

Table 11. Known substellar companions with a confirmed mass in the planetary and brown dwarf regime, respectively.


Gaia DR3	Name	$\mathcal{M}_c \sin i$	\mathcal{M}_{c}	i	$P_{\rm lit}$	P _{Gaia}	e _{lit}	e_{Gaia}	a_0	Refs.
		(\mathcal{M}_{Jup})	(\mathcal{M}_{Jup})	(deg)	(days)	(days)		Guu	(mas)	
6421118739093252224	HD 175167 b	7.8 ± 3.5	9.5 ± 0.9	28 ± 19	1290 ± 22	898 ± 198	0.54 ± 0.09	0.19 ± 0.12	0.22 ± 0.02	1
4062446910648807168	HD 164604 b	2.7 ± 1.3	14.3 ± 5.5	29 ± 19	606 ± 9	615 ± 12	0.24 ± 0.14	0.61 ± 0.34	0.56 ± 0.22	1,2
1594127865540229888	HD 132406 b	5.6	6.7 ± 2.1	122 ± 14	974 ± 39	893 ± 251	0.34 ± 0.09	0.31 ± 0.29	0.16 ± 0.04	3
4745373133284418816	HR 810 b	2.26 ± 0.18	6.2 ± 0.5	87 ± 6	312 ± 5	332 ± 6	0.15 ± 0.05	0.04 ± 0.2	0.30 ± 0.02	4,5
2367734656180397952	BD -17 0063 b	5.1 ± 0.12	4.3 ± 0.5	80 ± 6	656 ± 0.6	649 ± 36	0.54 ± 0.005	0.28 ± 0.22	0.22 ± 0.02	6
5855730584310531200	HD 111232 b	6.8	8.3 ± 0.6	97 ± 4	1143 ± 14	882 ± 34	0.20 ± 0.01	0.50 ± 0.10	0.51 ± 0.03	7
637329067477530368	HD 81040 b	6.8 ± 0.7	7.9 ± 0.9	108 ± 6	1002 ± 7	851 ± 113	0.53 ± 0.04	0.37 ± 0.15	0.39 ± 0.03	8
4976894960284258048	HD 142 b	1.3 ± 0.2	7.1 ± 1.0	59 ± 7	350 ± 4	319 ± 7	0.26 ± 0.18	0.26 ± 0.23	0.21 ± 0.03	5,9,10
2603090003484152064	GJ 876 b	2.1 ± 0.2	3.6 ± 0.4	101 ± 8	61.08 ± 0.01	61.4 ± 0.2	0.027 ± 0.002	0.16 ± 0.15	0.43 ± 0.05	11-18
2651390587219807744	BD -00 4475 b	25 ± 2	48.4 ± 7.6	129 ± 7	723.2 ± 0.7	780 ± 84	0.39 ± 0.01	0.48 ± 0.11	1.91 ± 0.28	19
2778298280881817984	HD 5433 b	49 ± 3	53.8 ± 1.7	12 ± 39	576.6 ± 1.6	576.7 ± 10.6	0.81 ± 0.02	0.46 ± 0.12	1.04 ± 0.03	19
3309006602007842048	HD 30246 b	55^{+20}_{-8}	40.6 ± 8.3	78 ± 2	990 ± 6	814 ± 141	0.84 ± 0.08	0.59 ± 0.10	1.34 ± 0.24	19
3750881083756656128	HD 91669 b	30.6 ± 2.1	43.2 ± 2.2	58 ± 3	497.5 ± 0.6	500.4 ± 6.9	0.448 ± 0.002	0.32 ± 0.06	0.73 ± 0.04	19
3751763647996317056	HD 89707 b	54^{+8}_{-7}	82.5 ± 12.7	54 ± 10	298.5 ± 0.1	297 ± 2	0.90 ± 0.04	0.68 ± 0.20	1.82 ± 0.30	19
685029558383335168	HD 77065 b	41 ± 2	64.2 ± 5.1	42 ± 3	119.113 ± 0.003	119.1 ± 0.2	0.694 ± 0.0004	0.70 ± 0.04	1.04 ± 0.07	20
855523714036230016	HD 92320 b	59.4 ± 4.0	70 ± 3.1	111 ± 2	145.4 ± 0.01	145.1 ± 0.3	0.323 ± 0.001	0.26 ± 0.05	0.82 ± 0.01	20
824461960796102528	HD 82460 b	73.2 ± 3.0	62.5 ± 6.4	66 ± 1	590.9 ± 0.2	579 ± 6	0.84 ± 0.01	0.73 ± 0.04	1.63 ± 0.09	21
873616860770228352	BD +29 1539 b	59.7 ± 2.0	60.7 ± 23.5	120 ± 9	175.87 ± 0.01	173 ± 3	0.275 ± 0.001	0.43 ± 0.12	0.61 ± 0.14	21
5563001178343925376	HD 52756 b	59.3 ± 2.0	61.2 ± 8.6	73 ± 4	52.8657 ± 0.0001	52.9 ± 0.1	0.678 ± 0.0003	0.54 ± 0.16	0.54 ± 0.08	22

References. (1) Arriagada et al. (2010); (2) Feng et al. (2019); (3) da Silva et al. (2007); (4) Kürster et al. (2000); (5) Butler et al. (2006); (6) Moutou et al. (2009); (7) Mayor et al. (2004); (8) Sozzetti et al. (2006); (9) Tinney et al. (2002); (10) Wittenmyer et al. (2012); (11) Trifonov et al. (2018); (12) Rivera et al. (2005); (13) Rivera et al. (2010); (14) Benedict et al. (2002); (15) Marcy et al. (2001); (17) Correia et al. (2010); (18) Nelson et al. (2016); (19) Dalal et al. (2021); (20) Wilson et al. (2016); (21) Kiefer et al. (2019); (22) Sahlmann et al. (2011).

Arenou et al. 2022


- A dip in the distribution in the 20-40 MJUP regime (but small-number statistics)

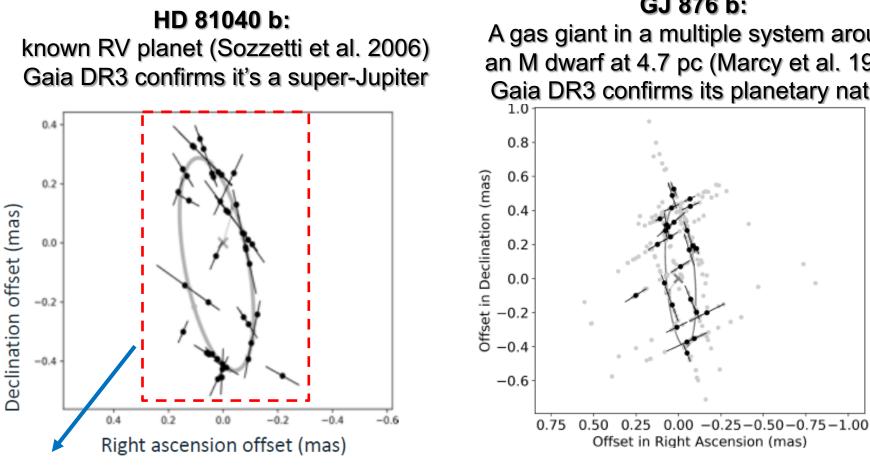
- First-time investigation of the BD desert with true masses available!

Gaia transiting planets

Panahi et al. 2022 (https://arxiv.org/abs/2205.10197)

First Gaia detections around moderately bright Sun-type stars:

Gaia-1b: P 3.05d, M_p =1.78 M_J , R_p =1.23 R_J Gaia-2b: P 3.69d, M_p =0.77 M_J , R_p =1.33 R_J


PUPSI- Bla

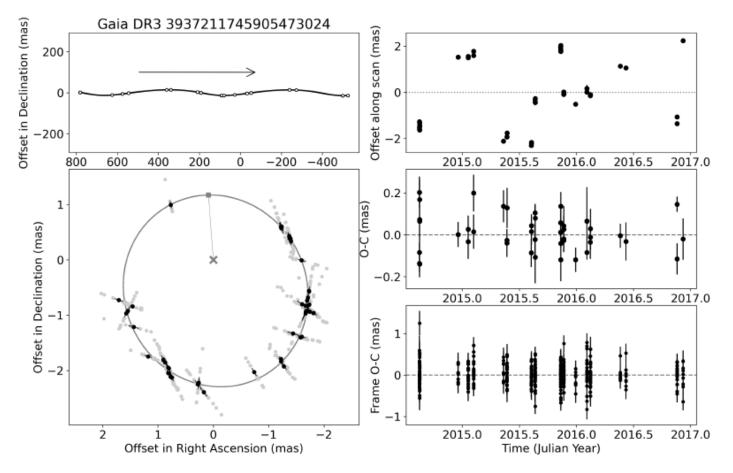
0.0 Phase

Gaia DR3 Astrometry: **Known Exoplanets**

GJ 876 b:

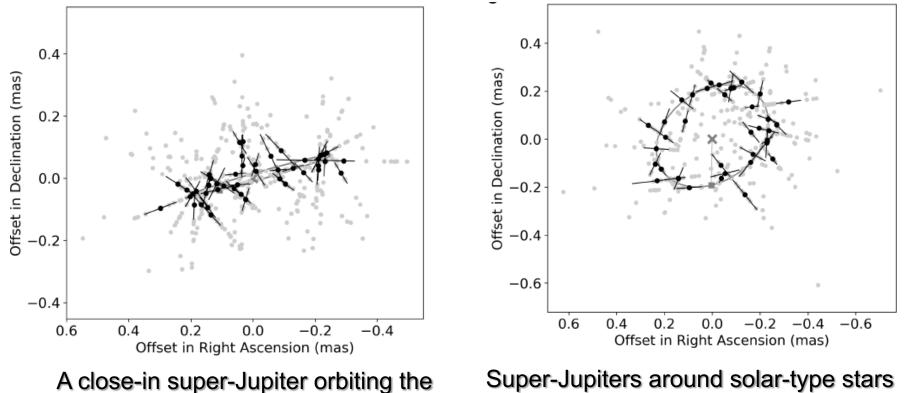
A gas giant in a multiple system around an M dwarf at 4.7 pc (Marcy et al. 1998) Gaia DR3 confirms its planetary nature

Hands-on session!


True masses for the first time!

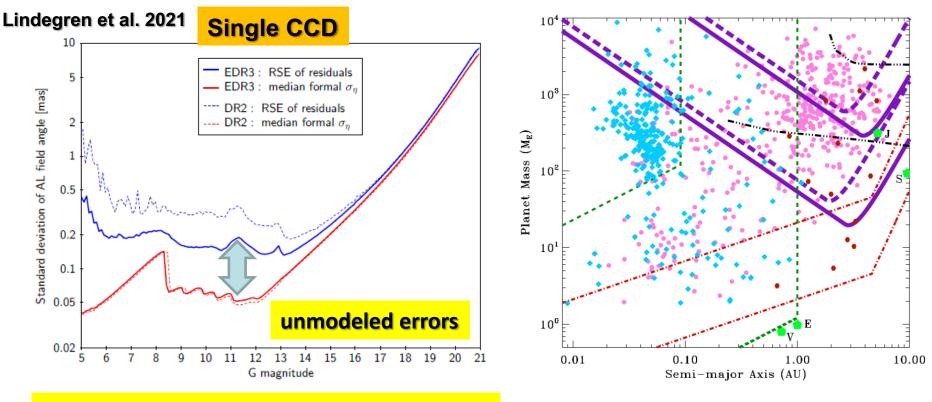
Exoplanet science in the Gaia era (ssw 2022)

A Famous Case


HD 114762 b:

- first substellar companion candidate around a solar-type star (Latham et al. 1989)
- Gaia DR3 orbit says it's a low-mass star

Exoplanet science in the Gaia era (ssw 2022)


Gaia DR3 Astrometry: New Exoplanet Candidates

A close-in super-Jupiter orbiting the nearby metal-polluted white dwarf WD 0141-675 Super-Jupiters around solar-type stars HIP 66074 and HIP 28193 and the young star HD 3221

First sample from Astrometry ever!

A(nother) Word of Caution

* G < 13 mag: typical σ_A ~ 50-60 µas
 * DR3: systematic errors ~ 0.15-0.2 mas
 * Calibration of bright stars still limited

For Gaia, G < 13 mag: σ_A ~ 15-20 μas (over 9 CCDs)

Critical to improve significantly the bright-star performance:
 At G < 13 mag exoplanet detections maximize the Gaia impact and synergy potential
 At G > 13 mag exoplanet detections will primarily have only a statistical value

Forecasting for DR4 and DR5...

Gaia will test the fine structure of GP parameters distributions and frequencies (including the GP/BD transition), and investigate their changes as a function of stellar mass, metallicity, age, and multiplicity with unprecedented resolution

No reason (yet) to doubt this will be the case!

Exoplanet science in the Gaia era (ssw 2022)

SUMMARY

- Gaia DR2/EDR3 allowed to use a) parallaxes to improve accuracy and precision of stellar and planetary parameters, and b) proper motions in a clever way to improve knowledge of existing and find new substellar companions
- Gaia DR3 is wetting our appetite for exoplanet discoveries and is already a gold mine for BDs
- Not everything is hunky-dory, but we mostly know why
- We are beginning to work hard towards DR4
- The astrometry revolution has started!