

Precision Astrometry Using Long Baseline Interferometry

Gail Schaefer

CHARA Array of Georgia State University

Comparisons with Gaia

Gaia

- Spatial Resolution: 100 mas
- Astrometric precision: 10 µas
- Absolute, wide-angle

Comparisons with Gaia

Gaia

- Spatial Resolution: 100 mas
- Astrometric precision: 10 µas
- Absolute, wide-angle

Long Baseline O/IR Interferometry

- Spatial Resolution: 0.5 mas
- Astrometric precision: 20-50 µas
- Relative, narrow-angle

Interferometric Binary

Visibility Modulation

- Fringe packet for the two components overlap
- Amplitude of fringes varies periodically

$$V = \frac{f_1 V_1 + f_2 V_2 \exp[-2\pi i(u\Delta \alpha + v\Delta \delta)]}{f_1 + f_2}$$

Visibility Modulation

• Fringe packet for the two components overlap

Georgia<u>State</u> University

- Amplitude of fringes varies periodically
 - Binary Separation ($\Delta \alpha$, $\Delta \delta$)

$$V = \frac{f_1 V_1 + f_2 V_2 \exp[-2\pi i (u\Delta \alpha + v\Delta \delta)]}{f_1 + f_2}$$

Visibility Modulation

• Fringe packet for the two components overlap

Georgia<u>State</u> University

- Amplitude of fringes varies periodically
 - Binary Separation ($\Delta \alpha$, $\Delta \delta$)
 - Flux Ratio (f₂/f₁)

$$V = \frac{f_1 V_1 + f_2 V_2 \exp[-2\pi i(u\Delta \alpha + v\Delta \delta)]}{f_1 + f_2}$$

Binary Orbits

GeorgiaState University

- Spatially resolved orbits of spectroscopic binaries
- Masses and distances with 1-3% precision
- Lester et al. (2020)

- Orbital parameters
 - P = 5.3 yr, a = 8.5 mas
- 1% geometric distance
 d = 720.35 ± 7.84 pc
 - Precise masses of Cepheid and companion
 - Companion: 3.3% flux
 - Impacts integrated magnitude and calibration of P-L relation
 - Gallenne et al. (2018)

Micro-arcsecond Precision Astrometry Detecting Wobble in Binary Orbits

PHASES

Muterspaugh et al. (2010)

Palomar Testbed Interferometer, CA Three 40 cm apertures 110 m max baseline

ARMADA Survey Searching for Planets in Intermediate Mass Binaries Giant Planets Discovered around Hot Stars

- Monitoring 70 binaries
- Binary separations of 50-200 mas
- CHARA/MIRCX in the North
- VLTI/GRAVITY in the South
- Gardner et al. (2021, 2022)

ARMADA Survey Detecting Wobble in Binary Orbits

Tyler Gardner (U. Michigan → Exeter)

Kappa Peg: Triple System

 PHASES: Search for substellar companions at Palomar Testbed Interferometer Muterspaugh et al. (2010)

Kappa Peg: Triple System

- PHASES: Search for substellar companions at Palomar Testbed Interferometer Muterspaugh et al. (2010)
- ARMADA Survey: CHARA/MIRC-X Gardner et al. (2021)

Newly Detected Triple Systems at CHARA and VLTI: Outer Binary Orbits

Newly Detected Triple Systems at CHARA and VLTI: Inner Wobbles

Newly Detected Triple Systems at CHARA and VLTI: Inner Wobbles

- 15 new triple detections published in Gardner et al. (2021, 2022 submitted)
- 20-50 µas median precision in astrometry (joint fit with RV)
- Most inner systems misaligned relative to outer orbits

Substellar Candidates for CHARA/MIRCX

- Both candidates are around A-type binaries with masses ~ 50 Mjup
- Need follow-up confirmation: astrometry or high precision RV

Dual Field Mode

- Difference in the fringe envelope position of the two objects as seen by the beam combiners is a measure of the object separation on sky
- VLTI/GRAVITY extends field of view out to 2" (UT) and 4" (AT)
- GRAVITY wide out to 30"

Pfuhl et al. (2021), Glindemann et al. (2003)

Exoplanet Astrometry with VLTI/GRAVITY

• Keplerian orbit of HR 8799 e.

Georgia<u>State</u> University

• GRAVITY K band spectrum of HR8799 e (R ~ 500)

GRAVITY Collaboration et al. (2018b)

GRAVITY Collaboration et al. (2018b)

Imaging Stellar Surface Features

Star Spot Jitter

CHARA MIRC-X Starspot Model

- ε Eridani closest K2V star and exoplanet host
- TESS photometry light-curve inversion
- Produce activity model to reduce rms scatter in radial velocities
- Disentangle stellar activity from planet
- Interferometric imaging: stellar inclination and orientation with respect to the debris disk
 Roettenbacher et al. (2022)

Star Spot Jitter

CHARA MIRC-X Starspot Model

- ε Eridani closest K2V star and exoplanet host
- TESS photometry light-curve inversion
- Produce activity model to reduce rms scatter in radial velocities
- Disentangle stellar activity from planet
- Interferometric imaging: stellar inclination and orientation with respect to the debris disk Roettenbacher et al. (2022)

Convective Spots

CHARA MIRC-X Image

• CL Lac: Asymptotic Giant Branch Star

Georgia<u>State</u> Universit

- Brightness asymmetry
- Photocenter variability caused by convection-related structures that accounts for large parallax error
- Use Gaia measurement uncertainties to extract the fundamental properties of AGB stars using RHD simulations

Chiavassa et al. (2020)

Apply for Time!

- Community access time is available at both the CHARA Array and VLTI
- Key science drivers
 - Stellar diameters exoplanet hosts
 - Binary Orbits
 - Stellar Surface Imaging
 - Circumstellar Disks
- Questions?

CHARA Array: Beam Combiners

Current Instruments	Upcoming Instruments	Past Instruments
MIRC-X 6T, H-band (J) Prism R=50, H < 6.5 – 7.5 <u>Grism</u> R=190, H < 5.5 – 6.5	2T 630-900 nm, R=30 Rmag < 7.0 - 8.0	VEGA 2T – 4T, 450 – 850 nm R = 1700, 6000, 30000 Operational: 2007 – 2020
MYSTIC 6T, K-band Prism R=49, H < 6.5 – 7.5 <u>Grism</u> R= 278, 981, 1724	SPICA 6T, 600 – 860 nm R = 140, 4400, 13000 Commissioning: 2022A	FLUOR/JouFLU 2T, K-band Operational: 2002 – 2018
CLASSIC/CLIMB JHK, Broadband 2T: K < 7.0 – 8.0 3T: K < 6.0 – 7.0	SIMARIL 3T, <u>HK</u> Improved sensitivity Commissioning: 2023	AQ/Tiptilt Tracking: V < 12 mag Magnitude limits are given as a rang from typical to best case sensitivities