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~17,000 G, F dwarfs in solar neighbourhood 
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• solar neighbourhood metallicity distributions, age-metallicity & age-velocity relations
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~17,000 G, F dwarfs in solar neighbourhood 
• ages, proper motions, metallicities, velocities — Nordstrom+ 2004
• solar neighbourhood metallicity distributions, age-metallicity & age-velocity relations

“Unlikely to be superseded until the Gaia mission
 (Perryman et al. 2001) and/or the RAVE project (Steinmetz 2003)”

Holmberg+ 2009

“upside-down” 
formation (Bird+ 2021, 

Wisnioski+ 2015) + disk 
heating (radial 

migration, molecular 
clouds, mergers)
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• Stellar mass — 75% in the disk, 24% is in the bulge

• We can resolve individual stars & derive a set of measurements from these stars
•   p(age, mass, chemical composition, orbits)age, mass, chemical composition,

stellar spectra

orbits

satellite missions measuring movement

All sky-density map of the 1.1 billion sources in Gaia (ESA/Gaia/DPAC/U.Lisbon)5
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Vera Rubin  

LIGO, 

LISA

MUSE

Nancy Grace 
Roman Space 

Telescope

ELTs

Kepler

TESS

JWST

•  Mapping (ages, 
velocities, 
metallicities)
• Planets

• An inventory of information 
across a huge range of spatial 
and temporal scales
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Where is the Milky Way spectra coming from?  

• Millions of spectra from a multitude of surveys — different λ, Resolution, spatial coverage:          
• Completed/current: APOGEE, GALAH, Gaia-ESO, RAVE, Gaia, LAMOST, SEGUE
• Future/Current: Gaia, SLOAN V, MOONS, 4-MOST, WEAVE
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• Deliverables from spectra:
• Vrad
• Teff, logg, [Fe/H] (stellar 

parameters) & [X/Fe] 
(chemical compositions)
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Stellar Astrophysics (SA) & Stellar System Architecture (SSA) 
- target known multi-star and planetary systems
- target stars with asteroseismic detections
- volume limited sample of stars < 100 pc
- young stars in clusters
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• The Populations in the Milky Way Galaxy 
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Milky Way Architecture

10

Stellar halo
1% of stellar mass but time 
capsule of early formation

Disk
75 % of stellar mass and 
record of assembly process

Bulge
24% of stellar mass and 
signature of formation events

Different populations show 
different abundances and have 

different orbital properties
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Helmi+ 2018: Gaia-Encedaleus or Saussage
 (see also Belokurov+ 2018, Myeong+ 2018, Deason+ 2018)

Data Merger Simulation

Also noted by Nissen & Schuster (2010)
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e.g. Feuillet+ 2021, di Matteo + 2019, Buder+ 2022, Lane+ 2022, Bird+ 2021, An+ 2021, Das+ 2020, Deason+ 2019, Mackereth+ 2019

Abundances to organise into progenitors, ex-situ, in-situ and related — Horta+ 2022 (APOGEE survey + Gaia) 

[Fe/H]

The MW halo is almost entirely composed of substructure
Naidu+ 2020, (H3 spectroscopic survey + Gaia) — 

Streams and possible dark-matter sub halo 
interaction: 

GD1 (PANSTARRS and GAIA)— Price-Wheelan & Bonaca 
2018, Bonaca+ 2018,  (also see Banik & Bovy + 2019)
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“Thin” and “Thick” disk 
Gilmore & Reid 1983

300pc scale height

1350pc scale height

 (Bensby 2004)

From APOGEE DR17 (Horta+ 2022)

“High” and “Low” alpha-disks (fast v slow star formation)
(see also Fuhrmann 1998, Gratton+ 2000, Tautvaisine+ 2001, 

Soubrian+ 2003, Reddy+ 2003)
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In the disk, stars are born…and move over time…  

NGC 4565

• Stars form in clusters, with presumably identical abundances

15

Armillotta et al., 2018

• one prospect to trace back disk assembly — chemical 
tagging (Bland-Hawthorn & Freeman 2010)

•  identify individual stars across the disk from the same birth 
sites using large vector of chemical abundances

these disperse in forming the disk

Ruth Nungarrayi Spencer
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Hunt+ 2022

The disk is out of equilibrium

NGC 4565

• With Gaia - see perturbations from bar, spiral arms and satellites in the velocities & metallicities

17

Antoja+ 2018

Phase-space spiral a signature of a perturbation such as Sagittarius dwarf galaxy tidal interaction 
(i.e. Binney & Schoenrich 2018, Laporte+ 2019, Khanna+ 2019, Hunt+ 2021, Bland-Hawthorn & Tepper-Garcia+ 2021, Gandhi+ 2021+, others) 

signatures of 
multiple 
perturbations
-in the inner galaxy 
there are two arms
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NGC 4565

image credit: (Lang - unwise photometry)

We see this X-shape in the Milky Way 

19

*Milky Way bulge is 27 degrees with respect to our line of sight

   UV (2200Å)                  B (4430Å)                    MIR (24 µm) 

Natale+ 15 

Ness+ 14 

Now use this idea to examine a 
high resolution simulation with 
gas, continuous star formation, 
feedback, chemistry etc. 

Nstar ~ 1.1 x 107 particles  

Sagan, 2022Melissa Ness



NGC 4565

image credit: (Lang - unwise photometry)

We see this X-shape in the Milky Way 

19

*Milky Way bulge is 27 degrees with respect to our line of sight

   UV (2200Å)                  B (4430Å)                    MIR (24 µm) 

Natale+ 15 

Ness+ 14 

Now use this idea to examine a 
high resolution simulation with 
gas, continuous star formation, 
feedback, chemistry etc. 

Nstar ~ 1.1 x 107 particles  

Sagan, 2022Melissa Ness



NGC 4565

image credit: (Lang - unwise photometry)

We see this X-shape in the Milky Way 

19

Sagan, 2022Melissa Ness



NGC 4565

image credit: (Lang - unwise photometry)

We see this X-shape in the Milky Way 

19

Sagan, 2022Melissa Ness



Observing many “rare” stars

20

Sagan, 2022Melissa Ness



Observing many “rare” stars

20

• Li-rich stars: Li-7 is destroyed at 2.5 x 10^6 K and depleted at all stages of stellar evolution

Sagan, 2022Melissa Ness



Observing many “rare” stars

20

• Li-rich stars: Li-7 is destroyed at 2.5 x 10^6 K and depleted at all stages of stellar evolution

• But - we see Li-rich stars —  requiring a production mechanisms — such as planet engulfment

Sagan, 2022Melissa Ness



Observing many “rare” stars

20

• Li-rich stars: Li-7 is destroyed at 2.5 x 10^6 K and depleted at all stages of stellar evolution

Enrichment from planet engulfment:
on the sub-giant branch 
(1-4-1.6 solar masses)

Sores-Furtado+ 2021

• But - we see Li-rich stars —  requiring a production mechanisms — such as planet engulfment

Sagan, 2022Melissa Ness



Observing many “rare” stars

20

• Li-rich stars: Li-7 is destroyed at 2.5 x 10^6 K and depleted at all stages of stellar evolution

Enrichment from planet engulfment:
on the sub-giant branch 
(1-4-1.6 solar masses)

Sores-Furtado+ 2021

• But - we see Li-rich stars —  requiring a production mechanisms — such as planet engulfment

Sagan, 2022Melissa Ness



Observing many “rare” stars

20

• Li-rich stars: Li-7 is destroyed at 2.5 x 10^6 K and depleted at all stages of stellar evolution

8000 Li-rich stars in LAMOST 
identified directly from spectra

Wheeler+ 2021 

Enrichment from planet engulfment:
on the sub-giant branch 
(1-4-1.6 solar masses)

Sores-Furtado+ 2021

• But - we see Li-rich stars —  requiring a production mechanisms — such as planet engulfment

Sagan, 2022Melissa Ness



Observing many “rare” stars

20

• Li-rich stars: Li-7 is destroyed at 2.5 x 10^6 K and depleted at all stages of stellar evolution

8000 Li-rich stars in LAMOST 
identified directly from spectra

Wheeler+ 2021 

Enrichment from planet engulfment:
on the sub-giant branch 
(1-4-1.6 solar masses)

Sores-Furtado+ 2021

• But - we see Li-rich stars —  requiring a production mechanisms — such as planet engulfment

Sagan, 2022Melissa Ness



21

Outline
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• The Milky Way Data Revolution

• Statistical Stellar Ages

• The Populations in the Milky Way Galaxy in the Gaia era
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Asteroseismic ages for red giants

• age-abundance relations for 8 of 18 elements measured in APOGEE

•  intrinsic dispersion around the age-[X/Fe] relations very small  = 0.02 dex

• age-date halo substructure (21 stars; Borre+ 2022; 10 stars; Grunblatt+ 2021) 

• precision age distributions of 𝝰-sequences (2000 stars, Silva-Aguirre+ 2018)

Ness+ 2019

•  for 100 red giants with [Fe/H] = 0 (low-α disk)

• invert age-
abundance 
gradients —> to 
get ages, given 
abundances —> 
also see 

• Moya+ 2022
• Feuillet+2018, 

Hayden+2021, 
Sharma+ 2021 
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*also The DD-Payne (Xiang+ 2019), Bingo (Ciuca+ 2021), AstroNN (Leung+2019)
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Data-driven models:
•  label “bad” data using models built from “good data” (bad = low SNR, low-resolution)
• extract “new” information from data
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An incomplete list…
Wu+ 1998, Prugniel+ 2011+ 2011 Ness+ 2015, 2016, Ho+ 2017, 2018, Casey+ 2017, 2019, Ting+2019, 

Leung+ 2018, Buder+ 2018, Hogg+ 2019, Eilers+ 2019, Birky+ 2020, Behmard+ 2020, Casagrande+ 2019, 
Xiang+2020,  Lucey+ 2020, Sayeed+2021, de Mijolla+2021, Feeney+ 2021, Green+ 2021, Galgano+ 2020, 

Feeney+ 2020, Blancato+2020, Leung 2019, Deacon+ 2019, Sit+2020, Wheeler+ 2020, Wylie+ 2021, 
Hawkins+ 2017, 2021, Lu+ 2021, Ciuca+ 2021

Data-driven models:
•  label “bad” data using models built from “good data” (bad = low SNR, low-resolution)
• extract “new” information from data
• see where the information resides in spectra

 Data-driven modeling: build a model using some subset of data & apply that model to the full data

*also The DD-Payne (Xiang+ 2019), Bingo (Ciuca+ 2021), AstroNN (Leung+2019)
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How The Cannon works on spectra (and other data-driven label transfer)

*see also DD-Payne Ting+ 2019, Xiang+ 2019,  ASTRO-NN Leung+ 2018
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How The Cannon works on spectra (and other data-driven label transfer)

Relies on a subset of n reference stars in the survey, with known labels (Teff, logg, [Fe/H]…) 

Uses n reference objects with known labels l to build a model Training

fnλ = g(ln|θλ) + noise

Teff, logg, [Fe/H]  photon noise +
 fit of spectral model

spectral model

Relates stellar labels l to stellar flux f, at each wavelength λ.

That model is then used to infer the stellar labels for the remaining stars in the survey Test

*see also DD-Payne Ting+ 2019, Xiang+ 2019,  ASTRO-NN Leung+ 2018
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The APOGEE example: to infer (Teff,logg,[Fe/H])

R = 22,500, H-band (1.5-1.7μm)

28
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ASPCAP, -2.5 < [Fe/H] < 0.5
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The APOGEE example: to infer (Teff,logg,[Fe/H])

Training set: 540 open and 
globular cluster stars, labels from 

ASPCAP, -2.5 < [Fe/H] < 0.5

labels of Teff, logg, [Fe/H]

fnλ = aλ + bλ(Teff)n + cλ(logg)n  + dλ([Fe/H])n + 
eλ(Teff·logg)n  + fλ(Teff·[Fe/H])n  + gλ([Fe/H]·logg)n +  

hλ(Teff)2n + iλ(logg)2n + jλ([Fe/H])2n + noiseλ

R = 22,500, H-band (1.5-1.7μm)
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fmλ = aλ + bλ(Teff)m + cλ(logg)m  + dλ([Fe/H])m + 
eλ(Teff·logg)m  + fλ(Teff·[Fe/H])m  + gλ([Fe/H]·logg)m +  

hλ(Teff)2m + iλ(logg)2m + jλ([Fe/H])2m + noiseλ
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(ii ) Examine generated model v observed spectra
 for test objects

(i) Take-one-out test to measure how 
well you can infer the labels
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How well does this work?
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From The Cannon, Ness+ 2015

Data Model

(ii ) Examine generated model v observed spectra
 for test objects

(i) Take-one-out test to measure how 
well you can infer the labels
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> 6000 red giant stars in APOGEE also observed by Kepler - APOKASC sample   
Pinsonneault+ 2018 — mass from asteroseismology

ln =  Teff, logg, [Fe/H], [α/Fe], mass

stellar parameters from APOGEE spectra
 with ASPCAP

— Cannon model that is used to determine masses for rest of APOGEE giants — 

Go from mass to age with stellar evolution models

To learn age: reference set of stars with known mass 

asteroseismology
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Origin of mass information
C & N Features

32

Martig et al., 2016, (see also Masseron & Gilmore 2015) 
mass dependent dredge up -> alters CN abundances 
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Martig et al., 2016, (see also Masseron & Gilmore 2015) 
mass dependent dredge up -> alters CN abundances 
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Models can leverage this 
indirectly or directly using 
[C/N/]-age calibration with 

asteroseimic stars or clusters
e.g. Spoo+ 2022, Casali+ 

2017, Martig+ 2016



Ages: inside out formation and flaring of the disk 

(also see Martig et al., 2016, Ness et al., 2016, Das & Sanders et al., 2018) 
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Ages: inside out formation and flaring of the disk 

(Ness et al., 2016 and also see Martig et al., 2016, Das & Sanders et al., 2018, Lu+2021) 
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Ages: inside out formation and flaring of the disk 

(Ness et al., 2016 and also see Martig et al., 2016, Das & Sanders et al., 2018, Lu+2021) 
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Milky Way Mapper - Ages for 4 
million stars including hundreds 

of thousands in the bulge 
&  

propagate ages to other surveys 
given stars in common
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75,000 stars from APOGEE DR16
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• Age-metallicity relations across the disk (e.g. Xiang+ 2022, Lu+ 2021, Feuillet+ 2019)

• Age dating the disk z-vz spiral from a perturbing impulse (e.g. Bland-Hawthorn+ 2019) 

• Age dating the bulge compared to the disk (e.g. Bovy+ 2019, Sit+ 2020, Hasselquist+ 2020, 
Surot+ 2019, Valenti+ 2018)
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Ness et al., 2018

A metric to compare the ‘chemical distance’ of pairs of stars within open clusters

Planet engulfment signatures: hidden in abundances of mono-age-
metallicity groups? 
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But some pairs of stars born 
together have large abundance 
differences. Why? (e.g. planet 

engulfment? Oh+ 2018)

most pairs are chemically indistinguishable in 20 elements

Sagan, 2022Melissa Ness

open clusters with 20 measured abundances
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Vera Rubin  
Observatory

ELTs

Nancy Grace 
Roman Space 

Telescope

TESSJWST

Kepler

opportunity <- ages, kinematics, abundances


