The role of astrometry in the detection and confirmation of exoplanets

Michael Perryman

Sagan Summer Workshop, Caltech, 25 July 2022

It is the Earth's motion around the Sun
that makes it possible to measure distances to the stars using the effect of

$$
\begin{aligned}
& \text { nearest star } \sim 1 \mathrm{pc}(1 \mathrm{arcsec}) \\
& \text { Galactic centre } \sim 8,000 \mathrm{pc} \sim 100 \text { microarcsec }
\end{aligned}
$$

Many other complications...

background stars are
moving through space

The first star distances...

After a 250 year marathon journey, Friedrich Bessel, Thomas Henderson, and
Wilhelm Struve measured the first star distances around 1838-39

Bessel was awarded the Royal Astronomical
Society Gold Medal, for
"the greatest and most glorious triumph which practical astronomy has ever witnessed"

Struve's refractor, Tartu (Estonia)

Herschel: "To drop a pea at the end of every mile of a voyage on a limitless ocean to the nearest fixed star, would require a fleet of 10,000 ships of 600 tons burthen, each starting with a full cargo of peas.

Accuracy of star positions through history

Astrometry provides star distances and 'space' motions

(more on these in talks by Dan Huber and Melissa Ness)

Applications include:

- distances provide stellar parameters:
- luminosity/radius essential ingredients for stellar evolutionary models
- for exoplanets, transit-derived areas \propto stellar diameters
- verification of asteroseismology models versus mass/radius
- proper motions characterise populations:
- disk (thin/thick) versus halo
- systems ejected from open clusters
- Galactic birthplace based on metallicity-age

Hipparcos distances to exoplanet host stars
100 brightest radial velocity host stars, status as of end 2010 (versus right ascension)

ground-based: van Altena et al (1995) (unknown assigned $\pi=10 \pm 9$ mas)
(b)

Hipparcos parallaxes

Distances to exoplanet host stars, pre-Gaia

1129 transiting planets (2014 May 1)

582 distinct host stars 188 Hipparcos distances 366 Kepler from $K-M_{K}$ median $\sim 670 \mathrm{pc}$ 28 placed at 1 kpc

Exoplanet discoveries:

 summary of methods

Astrometry in the context of exoplanet discoveries, 2022

The rapid pace of discovery, 1990-2015

The only astrometric discovery in the NASA exoplanet archive...

DE 0823-49 from VLT-FORS2 imaging (Sahlmann et al. 2013)

- ultracool L dwarf (0.07 $\left.\mathrm{M}_{\text {sun }}\right)$ at 20 pc
- 246-day orbit
- 28 Jupiter mass

The 'tragic history' of astrometric discoveries

Has included:

- Jacob (1855) 70 Oph: orbital anomalies made it 'highly probable' that there was a 'planetary body'; supported by See (1895); orbit shown as unstable (Moulton 1899)
- Holmberg (1938): from parallax residuals... `Proxima Centauri probably has a companion' of a few Jupiter masses
- Reuyl \& Holmberg (1943) 70 Oph: planetary companion of $\sim 10 M_{\mathrm{J}}$
- Strand (1943) 61 Cyg: companion of $\sim 16 M_{\mathrm{J}}$
- van der Kamp (1963, 1982): lengthy disputes about planets around Barnard's star
- Lippincott (1960): similarly for Lalande 21185
- Pravdo \& Shaklan (2009) vB10 with Palomar-STEPS, later disproved (Bean 2010)
- Muterspaugh et al. (2010) HD~176051: 'may represent either the first such companion detected, or the latest in the tragic history of this challenging approach'
- early discussions of space astrometry and Hipparcos exoplanet capabilities: Couteau \& Pecker (1964), Gliese (1982)

Principles underpinning global space astrometry

(i.e. Hipparcos and Gaia)

Measurements at these accuracies rest upon:

- observations above the atmosphere to eliminate turbulence ('seeing')
- two widely separated fields yield absolute parallaxes (rigidity condition)
- one-dimensional measurements, along scan (hence... rectangular mirrors \& CCD pixels)
- image location based on image centroid (not the diffraction-limit resolution!)
- simultaneous photometry to allow correction of chromatic aberration
- repeated measures (~ 100) at a wide range of position angles
- constant Sun aspect angle (thermal load) ensured by 'revolving scanning'
- extremely high thermo-mechanical instrument stability (10 pm)

Observing principles: Hipparcos and Gaia

Astrometry: manifestation of parallax and proper motion

Great-circle approach (Hipparcos):

- as the satellite traces out great circles on the sky, stars are (effectively) stationary
- each star has a 2 d position (abscissa and ordinate) projected onto that great circle
- in principle one could/should solve for both coordinates
- for Hipparcos, the projection along the great circle dominates the 'great-circle solution'
- least-squares adjustment gives the along-scan position of each star at that epoch
- all great circles over the mission are then 'assembled'
- star position at any time t is given by just five parameters: position (xy), proper motion ($\mu_{\mathrm{x}}, \mu_{\mathrm{y}}$), parallax (π)
- binaries, planets etc. demand more parameters

Gaia solves for both coordinates!!

Exoplanet inferred from a star's additional barycentric motion

An unseen planet perturbs the photocentre, which moves with respect to the barycentre (as for Doppler measures)

I will focus on stars orbited by a single planet!

Introducing the astrometric 'signature'

$$
\alpha=\frac{M_{\mathrm{p}}}{M_{\star}+M_{\mathrm{p}}} a \simeq \frac{M_{\mathrm{p}}}{M_{\star}} a \equiv\left(\frac{M_{\mathrm{p}}}{M_{\star}}\right)\left(\frac{a}{1 \mathrm{AU}}\right)\left(\frac{d}{1 \mathrm{pc}}\right)^{-1} \operatorname{arcsec}
$$

Status: 2018... evidently Hipparcos astrometry was marginal for detection (and mass determination)

Astrometry gives access to planet mass and Δi

Keplerian orbit in 3d is determined by 7 parameters:
a, e : specify the orbit size and shape
P : related to a and masses (Kepler's 3rd law)
t_{p} : the position along orbit at some reference time
i, Ω, ω : projections with respect to observer

Note that radial velocity measures:

- cannot determine Ω,
- can only determine the combination $a \sin i$
- can only determine $M_{\mathrm{p}} \sin i$ if M_{*} can be estimated
- cannot determine Δi for multiple planets

All 7 parameters are determinable by astrometry $\left(\pm 180^{\circ}\right.$ on $\left.\Omega\right)$:

- $x y(t)$ yields max/min angular rates, hence line of apsides (major axis)
- then appeal to Kepler's third law fixes the orbit inclination
\Rightarrow astrometry can determine M_{p}, inclination, and Δi for multiple planets Example: the HST-FGS astrometry of v And (McArthur et al, 2010)

Exoplanet detection with HST-FGS

quite a long history, starting with Benedict et al (1993)
[HST-FGS yields relative parallaxes based on assumed luminosities of reference stars]

- radial velocity observations determine only $M_{p} \sin i$
- astrometric measurements determine M_{p} directly
- and hence relative inclinations (van der Kamp 1981):
$\cos \Delta i=\cos i_{1} \cos i_{2}+\sin i_{1} \sin i_{2} \cos \left(\Omega_{1}-\Omega_{2}\right)$

For v And, McArthur et al (2010) found:

- $M_{p}(v$ And $c)=14.0 M_{j}$
- $M_{p}(v$ And $d)=10.2 M_{\mathrm{J}}$
- $\Delta i=29.9^{\circ} \pm 1^{\circ}$
the first direct determination of relative orbit inclinations

How many planets will Gaia detect?

(Perryman et al. 2014; see also Casertano et al. 2008; Sozzetti et al. 2014)

Based on:

- pre-launch Gaia accuracies: along-scan error versus magnitude
- a Galaxy population synthesis model (TRILEGAL; by Girardi et al 2012)
- known exoplanet occurrence frequencies (single planet) versus stellar type, mass, etc
- detailed observational model (field-of-view crossings) versus sky position
- planet detectability dependent on number and distribution of field-of-view crossings

Our predictions:

- 20,000 (5-yr mission) to 70,000 (10-yr mission) [assuming a single massive planet]

This should open a new area of exoplanet studies:

- it will pin-point a huge number of new systems which are Jupiter-like
- very different architectures from typical (short-period) transiting systems
- follow-up can aim to identify inner orbit, lower-mass, Earth-like planets
- perhaps these are the most likely to harbour (and protect) habitable planets...

How many of these are transiting?

- probability given by the solid angle
- for circular orbits (e.g. Borucki \& Summers 1984):

$$
p=\frac{R_{\star}}{a_{\mathrm{p}}} \simeq 0.005\left(\frac{R_{\star}}{R_{\odot}}\right)\left(\frac{a_{\mathrm{p}}}{1 \mathrm{AU}}\right)^{-1}
$$

- for eccentric orbits (e.g. Barnes 2007):

$$
p=\left(\frac{R_{\star}+R_{\mathrm{p}}}{a_{\mathrm{p}}}\right)\left(\frac{1}{1-e^{2}}\right)
$$

Perryman et al. (2014) estimated $\sim 40-100$ transiting planets

A small number, but potentially very interesting:

- periods: 1-5 years, i.e. 'middle region' planets
- $\sim 1-2 M_{\text {Jupiter, }}$ so (bright star) transits will be very pronounced, although...
- discovering these precisely transiting planets will not be easy...
- some may be in the Gaia photometry
- some may be in existing transit databases
- interesting for amateur/citizen science, to find inner transiting planets

For multiple planet systems...

Drawing on radial velocity work, multiple systems can be fit by recursive decomposition (e.g. Casertano et al. 2008; Wright \& Howard 2009; Traub et al. 2010)

5-planet system 55 Cnc
(Fischer et al 2008)

Periodograms wrt:
(i) 2-planet model
(ii) 3-planet model
(iii) 4-planet model

Periodicity of the fifth planet in the Keck data

Kepler's orbit of Mars seen from Earth

Sun's orbit wrt solar system barycentre

Two or more (massive) planets result in a family of beautiful and complex patterns of the host star motions, termed 'mandalas'

Astrometric 'predictions' (assuming coplanarity)

Star motion around barycentre for multiple planets (cont.)

Star motion around barycentre for multiple planets (cont.)

Gaia: transit estimates for (very) hot Jupiters

(e.g. Dzigan \& Zucker 2012)
advantages: 1 mmag photometric accuracy disadvantages: n (measures), low cadence
assumes 2-hr transit duration

Simulations account for planet frequency, detection probability, stellar density, false detections, etc

Conclusion: few hundred to a few thousand discoveries (with the need for high-precision radial velocity follow-up)

Gaia's first planets from photometric transits

Panahi et al. (2022), based on Early Data Release 3 (EDR3, 34 months data, 2014-17)

- candidates: $18383>89>41$ not EBs >21 transit-like signals >2 confirmed by radial velocities
- both are hot Jupiters, $P \sim 3$ day, ~ 1 Jupiter mass; and confirmed by TESS photometry

Predictions by Dzigan \& Zucker (2012): up to a few thousand planets with $\mathrm{P}<10$ days [limited number of observations]

Gaia Data Release 3: 13 June 2022

Gaia DR3

Observations:	
- time period	Jul 2014-May 2017
- observations duration	34 months
- reference epoch	J2016.0
- catalogue release date	13June 2022
Astrometry:	
- total number (3-21 mag)	$1,811,709,771$
- 5-parameter solutions	$585,416,709$
- 6-parameter solutions	$882,328,109$
- 2-parameter solutions	$343,964,953$
Photometry:	
- mean G magnitude	$1,806,254,432$
- mean GBP photometry	$1,542,033,472$
- mean GRP photometry	$1,554,997,939$
Radial velocities (4-13 mag)	$7,209,831$

New results in Gaia DR3	
Sources with radial velocities	33812183
Sources with mean GRVS-band magnitudes	32232187
Sources with rotational velocities	3524677
Mean BP/RP spectra	219197643
Mean RVS spectra	999645
Variable-source analysis	10509536
Variability types (from machine learning)	24
Classified variables	9976881
Cepheids	15021
compact companions	6306
eclipsing binaries	2184477
long-period variables	1720588
microlensing events	363
planetary transits	214
RR Lyrae stars	271779
short-timescale variables	471679
solar-like rotational variables	474026
upper-main-sequence oscillators	54476
active galactic nuclei	872228
Variable with radial-velocity time series	1898
Sources with object classifications	1590760469
Stars with emission-line classifications	57511
Astrophysical parameters (BP/RP spectra)	470759263
Astrophysical parameters (unresolved binary)	348711151

Spectral types	217982837
Evolutionary parameters (mass and age)	128611111
Hot stars with spectroscopic parameters	2382015
Ultra-cool stars	94158
Cool stars with activity index	1349499
H-alpha emission measurements	235384119
Astrophysical parameters from RVS spectra	5591594
Chemical abundances from RVS spectra	2513593
Diffuse interstellar band in RVS spectrum	472584
Non-single (astrometric, eclipsing, etc.)	813687
orbital astrometric solutions	169227
orbital spectroscopic solutions	186905
eclipsing binaries	87073
QSO candidates	6649162
redshifts	6375063
host galaxy detected	64498
host surface brightness profiles	15867
Galaxy candidates	4842342
redshifts	1367153
surface brightness profiles	914837
Solar system objects	158152
epoch astrometry (CCD transits)	23336467
orbits	154787
BP/RP reflectance spectra	60518
planetary satellites	31
All-sky Galactic extinction (HEALPix levels)	$6,8, a n d 9$

Gaia Data Release 3 results from Coordination Unit 4

CU4 processes: (a) non-single stars; (b) solar system; (c) galaxies

Binary systems classified as: visual; astrometric; spectroscopic; eclipsing
Solutions organised as: measured orbits; non-linear proper motion; + two others
Gaia DR3 contains (Arenou et al. 2022):

- 800,000 solutions with either orbital or trend parameters
- of which 130,000 are full orbit solutions, and 300,000 show non-linear motions
- $40 \times$ more orbit solutions than the Sixth Catalog of Orbits of Visual Binary Stars (Hartkopf et al. 2001)

Note that:

- most Hipparcos stars with 7- or 9-parameter solution also show proper motion anomalies
- all will be improved in future data releases (more data, better calibration)
- many of the 'non-linear' will progress to 'orbits' as temporal baseline improves
- full validation (excluding equal mass binary stars) can be a tricky problem

Status today

For sub-stellar companion masses, Arenou et al. (2022) reported these candidates:

- 1843 brown dwarfs
- 72 exoplanets
- of these, only 10 brown dwarfs and 9 exoplanets were previously known (good agreement in their properties)
- includes DENIS-P J082303.1-491201 (only astrometric planet in NASA archive)
- also includes GJ 876, HD 114762, HD 162020, HD 164604 (previous discoveries from radial velocities)

So far, just two new candidates have validated orbits:

- HIP 66074: $P=297 \pm 2.8$ day, $e=0.46 \pm 0.17, a_{0}=0.21 \pm 0.03$ milli-arcsec, $M_{\mathrm{p}}=7.3 \pm 1.1 M_{\text {Jupiter }}$
- HIP 28193: $P=827 \pm 50$ day, $e=0.07 \pm 0.10, a_{0}=0.25 \pm 0.02$ milli-arcsec, $M_{\mathrm{p}}=5.3 \pm 0.6 M_{\text {Jupiter }}$

Other candidates include:

- WD 0141-675 (9.8 pc): a (rare) giant planet orbiting a white dwarf (metal-enriched system \Rightarrow debris capture?)

HD $114762 G=7.15, P=83.74 \pm 0.12$ day, $e=0.32 \pm 0.0 .4$, parallax $=25.36 \pm 0.04$ milli-arcsec

Microlensing

If the observer (Gaia), some star at intermediate distance (lens), and some distant background star (source) align precisely, then the light from the background star can be strongly magnified!

- previously known (273)

While thousands have been found from ground, Gaia is discovering more, all across the sky
The first of Gaia's discoveries
(Wyrzykowski et al., 2022)

These animations, with different lens-source geometries, show what's happening during observations by Gaia

Expected in the future: astrometric lensing (the position of the light moves), and hence mass of lensing events (e.g. black holes, isolated planets)

Animations by Kris Rybicki,

Summary

Gaia could discover:

- 20,000-70,000 massive long-period planets to $d \sim 500 \mathrm{pc}$
- 1000-1500 around M dwarfs out to 100 pc (predictions for other spectral types)
- orbit determination for orbital periods $0.6-6$ years
- hundreds of multiple systems with tests of coplanarity
- 1000 or more others from photometric transits, $\mathrm{P}<10$ days

Transiting planets:

- Gaia will not measure astrometric displacements of known transiting planets
- there will be $40-120$ transiting planets amongst the astrometric discoveries
- nearly transiting systems are of interest for nearly coplanar systems

Goal: to understand planet formation and evolution...

... its growth over 14 orders of magnitude
... and many other very interesting phenomena along the way

Thank you

And do talk to me in the next three days!

