Near-Term Exoplanet Discovery using Proper Motions

Timothy Brandt
University of California, Santa Barbara

with G. Mirek Brandt, Yiting Li, Minghan Chen, Mikhail Lipatov, Qier An, Hengyue Zhang, Trent Dupuy, Jackie Faherty, Brendan Bowler, Tyler Groff, Jeff Chilcote, Thayne Currie, Motohide Tamura, Masayuki Kuzuhara, the SEEDS and CHARIS teams, and many others

27 July 2022

Gaia: ~ 1 billion positions, proper motions
Limited exoplanet results from the first non-single star fits
... but Hipparcos measured $\sim 100,000$ positions and proper motions almost 30 years ago.

hipparcos

How many proper motion measurements?

How many proper motion measurements? three

25-year baseline between Hipparcos and Gaia makes up for Hipparcos' lower precision

Change in proper motion \rightarrow acceleration in an inertial reference frame

Newton says $\mathrm{a}=\frac{\mathrm{GM}}{\mathrm{r}^{2}}$

Published catalogs are fits to observed sky paths

Figure by G. Mirek Brandt

Keep in mind:

$$
\frac{\text { acceleration }}{\text { au } \mathrm{yr}^{-2}}=\left(\frac{\text { acceleration }}{\operatorname{arcsec}^{\mathrm{yr}}{ }^{-2}}\right) \times\left(\frac{\text { distance }}{\text { parsecs }}\right)
$$

Need motion across Gaia and Hipparcos baselines: need orbital periods $\gtrsim 5$ years

Numbers and equivalents

- Change of 0.1 mas $_{\mathrm{yr}}{ }^{-1}$ between μ_{HG} and μ_{G}
- Acceleration of $\approx 0.01 \mathrm{mas}^{\mathrm{yr}}{ }^{-2}$
- Acceleration of $\approx 2 \mathrm{~m} \mathrm{~s}^{-1} \mathrm{yr}^{-1}$ at $40 \mathrm{pc}(=25 \mathrm{mas}$ parallax)

$$
\frac{M}{M_{\text {Jup }}} \approx\left(\frac{\text { separation }}{10 \mathrm{au}}\right)^{2}\left(\frac{\text { distance }}{40 \mathrm{pc}}\right)\left(\frac{\text { acceleration }}{\left.0.01{\text { mas } \mathrm{yr}^{-2}}\right)}\right.
$$

If we also have RV and relative astrometry (from images), we can weigh systems with arbitrarily long periods:

$$
\begin{gathered}
\mathrm{a}_{\text {astrometric }}=\frac{\mathrm{GM}_{2}}{\mathrm{r}_{12}^{2}} \cos \varphi \\
\mathrm{a}_{\mathrm{RV}}=\frac{\mathrm{GM}_{2}}{\mathrm{r}_{12}^{2}} \sin \varphi \\
\rho_{\text {projected }}=\mathrm{r}_{12} \cos \varphi
\end{gathered}
$$

\Rightarrow companion mass M_{2} !

So what might stop us?

We want to use proper motion differences to look for accelerating stars and measure accelerations.

- Are all of the proper motion measurements in the same reference frame?
- Are the uncertainties correct? How can we tell?

Hypothesis: most stars are not accelerating (much)

$$
\underbrace{\left(\frac{\mu_{\text {Gaia }}-\mu_{\mathrm{HG}}}{\sqrt{\sigma_{\text {Gaia }}^{2}+\sigma_{\mathrm{HG}}^{2}}}\right)}_{\text {z-score }} \in \text { unit Gaussian? }
$$

Hipparcos residuals from long-term proper motions

Gaia EDR3 residuals from long-term proper motions

As published, neither Hipparcos nor Gaia scaled proper motion residuals follow the standard normal distribution.
... but this can be fixed with a cross-calibration.

Tricks and Subtleties

Astrometric parameters are covariant: a better measurement of one improves the others

- Gaia parallax \Rightarrow better Hipparcos proper motion

Characterisitic observational epoch varies star-by-star

- Propagate everything to the epoch with minimum positional uncertainty.

Nuances of Hipparcos

There are two reductions of the raw data:

- FAST \& NDAC (merged in the 1997 catalog)
- Hipparcos 2 (van Leeuwen, 2007)

Which is best?

Nuances of Hipparcos

There are two reductions of the raw data:

- FAST \& NDAC (merged in the 1997 catalog)
- Hipparcos 2 (van Leeuwen, 2007)

Which is best?

Both!

Nuances of Hipparcos

There are two reductions of the raw data:

- FAST \& NDAC (merged in the 1997 catalog)
- Hipparcos 2 (van Leeuwen, 2007)

Which is best?

Both!

0.6 Hip2 + 0.4 Hip1 > Hip2 $>$ Hip1

Nuances of Hipparcos

Difference between Hipparcos, long-term proper motion
60/40 linear combination of the two Hipparcos reductions beats either one on its own (at 150σ significance)

Correcting an example field, DR2

$$
\begin{aligned}
\Delta \mu_{\alpha *} & =\mu_{\alpha *, \text { Gaia }}-\frac{\alpha_{\text {Gaia }}-\alpha_{\text {Hip }}}{\mathfrak{t}_{\text {Gaia }}-\mathfrak{t}_{\text {Hip }}} \cos \delta \\
\Delta \mu_{\delta} & =\mu_{\delta, \text { Gaia }}-\frac{\delta_{\text {Gaia }}-\delta_{\text {Hip }}}{\mathfrak{t}_{\text {Gaia }}-\mathfrak{t}_{\text {Hip }}}
\end{aligned}
$$

No correction for frame rotation

Global correction for frame rotation

Locally variable correction for frame rotation

What about the uncertainties?

Hipparcos: use Gaia to select stars that are not accelerating ($\mu_{\mathrm{HG}} \approx \mu_{\mathrm{G}}$), check z-scores

- Calibrated uncertainties much larger than Hip2 for bright stars

Gaia: use stars with constant RV (no acceleration along the line-of-sight)

- Need to inflate EDR3 uncertainties by $\approx 35-40 \%$

Calibration of Gaia EDR3 Uncertainties

 thank you to the HARPS, HIRES, and Lick teams!

Calibration of Gaia EDR3 Uncertainties

 thank you to the HARPS, HIRES, and Lick teams!

Typical acceleration precision: $\sim 5 \mu$ as yr^{-2} !

(E)DR3 improves sensitivity by a factor of ≈ 3

Hipparcos-Gaia Catalog of Accelerations, EDR3 (Brandt 2021)

- Three proper motions in the EDR3 frame
- Calibrated uncertainties
- Suitable for orbit fitting

Notes of Caution

- Proper motions are not instantaneous measurements
- Epochs of positions, proper motions \neq catalog epochs

Final Hipparcos residuals

Final Gaia EDR3 residuals: lots of real accelerators!

Shameless Self Promotion: Tools from UCSB

Hipparcos-Gaia Catalog of Accelerations
Hundred Thousand Orbit Fitter: Mirek Brandt+, 2021

- Simulate Hipparcos and Gaia results for any orbit

Orvara: Tim Brandt+, 2021, with Yiting Li

- Fast and efficient orbit fitting

We can fit orbits with Gaia today!

Planet Discovery from Astrometry

You have a $\Delta \mu$, i.e., an acceleration $a \sim M / r^{2}$. Could be:

- A wide stellar companion
- A somewhat closer brown dwarf companion
- A closer-in exoplanet

Planet Discovery from Astrometry

You have a $\Delta \mu$, i.e., an acceleration $a \sim M / r^{2}$. Could be:

- A wide stellar companion
- A somewhat closer brown dwarf companion
- A closer-in exoplanet

Do you also have precision RVs?

- Pierre Kervella's talk!
- Masses, orbits, inclinations: Yiting Li+, 2021, Feng+ 2019, Venner+ 2021, Xuan+Wyatt 2020, Damasso+ 2020, Hill+ 2021, Bardalez Gagliuffi+ 2021

How about direct imaging?

New targets for imaging searches

Masayuki Kuzuhara's Poster

How about direct imaging?

If we have imaging:

- Can get precise dynamical masses and orbits!
- Directly measure exoplanet/brown dwarf spectra!

See Mirek Brandt's talk, posters from Masayuki Kuzuhara, Qier An, Mariangela Bonavita, Kyle Franson, Alexander Venner, and Thayne Currie

Current significance of astrometric acceleration

Planet Hosts

- β Pic: 3σ
- HR 8799: 5σ
- 51 Eri: 0 σ
- π Mensae: 8σ

Brown Dwarf Hosts

- Gl 229: 115σ
- GI 758: 40
- HR 7672: 180σ
- HD 4113: 8σ

Depends a lot on companion mass, system proximity to Earth, companion semimajor axis.

A note on proper motions as plotted by orvara:

Three constraints, none are truly points.

The Future: another position can extend Gaia's sensitivity to longer periods! Friday talks

Figure by Zack Briesemeister

Summary

- Absolute astrometry gives accelerations in an inertial reference frame! (must ensure values, uncertainties are calibrated)
- Dynamical beacons indicate unseen companions
- Masses and orbits today (many talks and posters here)
- Big sensitivity improvements coming with DR4 and beyond (perhaps with calibration challenges!)

