Sagan Summer Workshop 2023

Next Steps in Characterizing Exoplanet Atmospheres with JWST: Transit Science

Nikole K. Lewis Cornell University

You've already seen some of the awesome JWST Cycle 1 transiting exoplanet science this week...

Credit: NASA, ESA, CSA, J. Olmsted (STScl)

JWST Transiting Exoplanet ERS Team

You've already seen some of the awesome JWST Cycle 1 transiting exoplanet science this week...

Exoplanet WASP-18 b

Credit: NASA, JPL-Caltech (R. Hurt/IPAC)

Atmospheric Spectrum & Detection of Water

You've already seen some of the awesome JWST Cycle 1 transiting exoplanet science this week...

Credit: NASA, ESA, CSA, J. Olmsted (STScl)

Zieba et al. (2023)

JWST time-series observations are AMAZING!

WASP-96b

"You can't really know where you are going until you know where you have been"

-Maya Angelou

A solid foundation was laid for exoplanet atmospheric characterization in the era of JWST

Increasing complexity and fidelity of exoplanet atmospheric models

1990 – Hubble Launched

1995 - First **Exoplanet Around** Sun-like Star Discovered

2000 - First **Exoplanet** Transit Detected

Launched

Development and application of atmospheric retrievals

Development of 1D, 2D, and 3D atmospheric forward models

Hubble provided first detection of an exoplanet atmosphere

Artist's View of Planet around the Star HD 209458

NASA and G. Bacon (STScl) • STScl-PRC01-38

2001 – Hubble's STIS Instrument

Spitzer was among the first to measure the light (or absence thereof) from an exoplanet

Spitzer Space Telescope • IRAC • MIPS **Planetary Eclipses**

NASA / JPL-Caltech / D. Charbonneau (Harvard-Smithsonian CfA) D. Deming (Goddard Space Flight Center)

Spitzer obtained the first mid-infrared emission spectra of exoplanets

Infrared Spectrum of HD 189733b NASA / JPL-Caltech / C. J. Grillmair (SSC/Caltech) Spitzer Space Telescope • IRS ssc2007-04c

Spitzer provided our first insights into the complex chemistry in sub-Jovian sized worlds

Multiwavelength Secondary Eclipse of Exoplanet GJ 436b Spitzer Space Telescope • IRAC • IRS • MIPS

NASA/JPL-Caltech/K. Stevenson (Univ. of Central Florida)

ssc2010-05a

Improved observational techniques brought higher fidelity multi-dimensional views of exoplanet atmospheres

Atmospheric theorists rose to the challenges presented by observational data and developed models of growing complexity

Kempton et al. (2011)

The development and application of exoplanet atmospheric retrieval algorithms transformed our view of exoplanet atmospheres

Barstow & Heng (2020)

Kreidberg et al. (2014)

۲_{.0}

× ک^ی ک^ی ک^ی کر کر کر کر کر کر کر کر کر اوg H2O log CH4 log CO log CO log

CO

Eventually a comparative sample of exoplanet atmospheres evolved...

Artist's Impression of "Hot Jupiter" Exoplanets NASA and ESA • STScI-PRC15-44b

Observations from *Hubble* and *Spitzer* have provided detections of H_2O , Na, K, TiO, H, He, aerosols, and hints of many other atmospheric components.

With *Spitzer* and *Hubble* we embarked on our first probes of the atmospheres of habitable zone worlds

K2-18b

TRAPPIST-1

deWit et al. (2018)

Image Credits: NASA/ESA/STScl

A reminder of the instrument systematics and other noise sources tackled in the era of *Hubble* and *Spitzer*

Precision "records": *Spitzer* ~ 20 ppm, *Hubble*~30 ppm

In the era of *Hubble & Spitzer* >100 transiting exoplanets with atmospheric characterization observations

<u>In the era of JWST</u> Potential for >500 transiting exoplanets with atmospheric characterization observations

JWST Transiting Exoplanets Cycle 1 & 2 Targets

~120 Individual Targets 300+ Observations ~2800 hours 20% of JWST GO Time

> 207 Transits 90 Eclipses 20 phase-curves

Figure Credit: Hannah Wakeford/Sarah Moran

"Your future is whatever you make it, so make it a good one."

-Doc Brown

JWST Cycle 3 GO deadline = Wednesday October 25th, 2023

JWST High-Precision Bright-Object Time-Series Modes

NIRCam

0.6-5 microns

Spectroscopy

2.5-5.0 microns $K > 3.5, R \sim 1450$

Photometry 0.7-4.8 microns

K > 10

NIRSpec BOTS I-5 microns Spectroscopy

> 5, R~2700 $| > 6, R \sim |000|$ $> 9.5, R \sim 100$

https://jwst-docs.stsci.edu/methods-androadmaps/jwst-time-series-observations

5-28 microns Slitless Spectroscopy $K > 5, R \sim 100$ IFU Spectroscopy 4.9-27.9 microns $K > 2, R \sim 1500-3500$ Photometry 5.6-25.5 microns

> NIRISS SOSS 0.6-2.8 microns Spectroscopy | > 6, R~700

JWST High-Precision Bright-Object Time-Series Modes: New for Cycle 3! SW LW 0

Pixel

Z

1.0-2.0 µm spectra can be taken at the same time as the standard, longer wavelength, F322W2 (2.5-4.0 µm) or F444W $(4.0-5.0 \ \mu m)$ spectra on the long wavelength detectors

NIRCam DHS produces 10 R~300 spatially separated spectra

Targets as bright as K~1 can be observed with this mode!

Pixel 1000 \succ Z 1500

JWST Transiting Exoplanet Proposal Roadmap

https://jwst.etc.stsci.edu/

1) Science Question

PandEx

Batalha et al. (2017), https://natashabatalha.github.io /PandExo/

2) Targets and Models

3) Modes and Precision

4) Make sure you have the team necessary to tackle proposal and future observations

Astronomer's Proposal Tool (APT)

apt.stsci.edu

5) Iterate, polish, submit and wait..

"There are no insurmountable challenges to Transiting Exoplanet Observations with JWST."

-Nikole Lewis

Surmountable challenges for JWST transiting exoplanet atmospheric characterization observations

Bandpass 0: 5.000 - 5.500

Bandpass 11: 10.500 - 11.000

Surmountable challenges for JWST transiting exoplanet atmospheric characterization observations

Mirror Tilt Events

1/f and background noise

Surmountable Challenges for JWST exoplanet atmospheric characterization observations

3D atmospheric structure and processes

Hörst et al. (2018)

Robust chemistry/opacity databases Supporting laboratory investigations

See Fortney and 80+ co-authors whitepapers

Surmountable challenges for JWST transiting exoplanet atmospheric characterization observations

"If you want to go fast, go alone. If you want to go far, go together." -African Proverb

Community-driven workshops, data challenges, collaborations and into exoplanet atmospheres are gained in the coming decade

Spitzer Data Reduction Challenge (Ingalls et al. 2016)

Ariel Atmospheric Retrieval Challenge (Barstow et al. 2022)

open-source software can accelerate the rate at which new insights

JWST Transiting Exoplanet ERS Collaboration (ers-transit.github.io)

In the coming decade JWST will not be the only space-based facility spectroscopically probing transiting exoplanet atmospheres

CUTE – Cubesat launched in 2021

Pandora – Smallsat launch in mid-2020s

Ariel – M4 Mission launch in 2029

In the era of JWST, Hubble will still provide critical access to UV, Optical, and NIR wavelengths necessary for understanding exoplanet atmospheric chemistry and evolution

Strategic Exoplanet Initiatives with HST and JWST Working Group

https://sites.google.com/view/exoplanet-strategy-wg

Townhall on July 31st, 2023 is reserved for early career researchers!

Credit: Mercedes Lopez-Morales

Opportunities for synergies between ground and space-based observatories for transiting exoplanet atmospheric characterization

Kirk et al. (2021)

Low-resolution optical/NIR transmission spectroscopy and stellar monitoring

Van Sluijs al. (2023)

High-resolution resolution optical/NIR spectroscopy

Early-career researchers have an important opportunity shape JWST transiting exoplanet science in the coming decade...

Molecules in the Atmospheres of Extrasolar Planets - a Workshop in Paris

My First Exoplanet Meeting (~ 50 people)

Sagan Summer Workshop Characterizing Exoplanet Atmospheres: The Next 20 Years

To today.... (1000+ people)