Transmission Spectroscopy

Hannah Wakeford (She/her) Associate Professor in Astrophysics University of Bristol

UK Research and Innovation

Horizon Europe Funding

Transmission Spectroscopy Measure of atmospheric absorption and transmission during transit

Hannah Wakeford - University of Bristol

Primary Transit

The planet passes in front of the star Absorption (transmission) through the planets atmosphere can be measured by the change in area blocked

Absorption and Energy Levels The process where photons are transformed into internal energy

On a quantum mechanical level, a molecule can only absorb or emit energy of wavelength λ if it has energy levels separated by a transition energy

Hannah Wakeford - University of Bristol

Emission

Absorption

Transmission

Detection

Electronic + vibrational energy levels

spectra transmission spectra wavelengt

Electron motion: $\Delta E \sim 1000 \,\mathrm{eV} - 1 \,\mathrm{eV}$ $\lambda \sim 1 \,\mathrm{nm} - 1 \,\mu\mathrm{m}$ UV - Optical

Molecular Vibration: $\Delta E \sim 100 \,\mathrm{meV} - 0.1 \,\mathrm{meV}$ $\lambda \sim 10 \,\mu \mathrm{m} - 1 \,\mathrm{cm}$ IR - sub-mm & radio

Photon Energies Tell You About Absorption Properties Different energy scales in atoms and molecules correspond to different process

Ro-vibrational overtones: $\Delta E \sim 1 \,\mathrm{eV} - 100 \,\mathrm{meV}$ $\lambda \sim 1 \,\mu m - 10 \,\mu m$ Near- to Mid-IR

Molecular Rotation: $\Delta E \sim 0.01 \text{ meV}$ $\lambda \sim 10 \,\mathrm{cm}$ Radio

Infrared Absorption

Electric dipole = structural separation of +ve and -ve charges

Molecules with a pronounced dipole moment will absorb in the infrared

- * The wavelength of infrared radiation has a wavelength larger than a typical molecule * As far as the molecule is concerned, the electric field of the IR radiation represents a uniform external field.
- * Within this field all positive charges are pushed in one direction and all the negative charges are pushed in the opposite direction. This motion produces a fluctuation on the dipole moment which is how the IR radiation induces a vibration.

Absorption in the Earth's Atmosphere The size of the atmosphere looks different at different wavelengths

Credit: Himawary/Simon Proud/Vivien Parmentier

Hannah Wakeford - University of Bristol

Real color

Absorption in the Earth's Atmosphere The size of the atmosphere looks different at different wavelengths

Credit: Himawary/Simon Proud/Vivien Parmentier

Absorption in the Earth's Atmosphere The size of the atmosphere looks different at different wavelengths

Credit: Himawary/Simon Proud/Vivien Parmentier

Hannah Wakeford - University of Bristol

The more atmosphere, the more signal transmitted

- The larger the atmosphere the easier the measurement will be.
- The larger the cross section of the molecule the larger the impact on the spectrum for small amounts

The slant geometry measured in transit often increases absorption significance by over 30x

5

Measured Transit Depth The atmosphere adds a more area blocked by the planet

Measured Transit Depth The atmosphere adds a more area blocked by the planet

 $\delta = \frac{A_p}{A_*} = \frac{\pi R_p^2}{\pi R_*^2} = \left(\frac{R_p}{R_*}\right)^2$ $\delta = \frac{A_p + A_{atm}}{A_*} = \frac{\pi \left(R_p + H_{atm}\right)^2}{\pi R_*^2} \approx \left(\frac{R_p}{R_*}\right)^2 + \frac{2R_p H_{atm}}{R_*^2}$

Atmospheric Scale Height Height at which pressure decreases by a factor of e (exponent)

Hannah Wakeford - University of Bristol

H = Atmospheric Scale Height k_B = Boltzmann Constant T = Planetary Temperature μ = Atmospheric Mean Molecular Weight

g = planet gravity

Atmospheric Pressure Structure Hot air rises but it also gets colder as you go up, how does that work?

 \bigcirc

Hannah Wakeford - University of Bristol

Change in pressure with altitude causes a change in the temperature

As you go up in the atmosphere the pressure drops and how it does this is important.

The pressure for a column of air is just due to the weight of that air

$P(z) - P(z + \Delta z) = \frac{\rho(z)Ag\Delta z}{\Delta} = \rho(z)g\Delta z$

Hannah Wakeford - University of Bristol

The pressure for a column of air is just due to the weight of that air

This assumes that density is constant. Therefore, Δz must be very small

Hannah Wakeford - University of Bristol

The pressure for a column of air is just due to the weight of that air

$$P(z) - P(z + \Delta z) = \frac{\rho(z)Ag\Delta z}{A}$$

This assumes that density is constant. Therefore, Δz must be very small

At the limit where $\Delta z \rightarrow 0$

Hannah Wakeford - University of Bristol

- $\dot{z} = \rho(z)g\Delta z$

The pressure for a column of air is just due to the weight of that air

$$P(z) - P(z + \Delta z) = \frac{\rho(z)Ag\Delta z}{A}$$

This assumes that density is constant. Therefore, Δz must be very small

 ∂P

At the limit where $\Delta z \rightarrow 0$

Hannah Wakeford - University of Bristol

Hydrostatic Equilibrium In the limit that the air is not moving we can say it is in hydrostatic equilibrium

Change in pressure with increased altitude, is decreasing as density times gravity

> This works for any situation where only the force acting is gravity If the air is not moving this is then said to be in Hydrostatic Equilibrium

Treating it as an ideal gas:

 $PV = nRT = nk_RN_AT$

Hannah Wakeford - University of Bristol

 ∂P ρg ∂Z

> Have to keep T in the derivative as it may change with altitude

Atmospheric Scale Height Height at which pressure decreases by a factor of e (exponent)

$$\frac{\partial(\rho T)}{\partial z} = -\frac{g}{R'}\rho$$

If we differentiate density with height we get, $\rho(z) = \rho_0 e^{-\frac{z}{H}}$

Hannah Wakeford - University of Bristol

If we fix T (for Earth average T = 287 K)

We get the rate of change of density with height is equal to minus constant times density

R'T	RT	$k_B T$
8	Mairg	μg
CALE HEIGHT		

This is the length scale of the atmosphere where Pand ρ changes by e

Optical Depth and Absorption Cross Sections How much stuff the light will pass through

Optical depth (τ) is a dimensionless measure of how far the light has penetrated down into the atmosphere from the top Roughly how much ' stuff ' the light will pass through

It takes into account the modifying effects of both mass extinction and density, at a specific wavelength

Optical Depth and Absorption Cross Sections How much stuff the light will pass through

Optical depth (τ) is a dimensionless measure of how far the light has penetrated down into the atmosphere from the top Roughly how much ' stuff ' the light will pass through

At slant geometries this becomes:

Such that the Earth's atmosphere at slant geometries is 75x that at normal to the planet. Hot Jupiters range from ~35-90x normal

Effective Altitude Height at which pressure decreases by a factor of e (exponent)

Hannah Wakeford - University of Bristol

We can then calculate the effective altitude of a planetary atmosphere by assuming it is in hydrostatic equilibrium with a constant density profile and gravity we get,

Getting Transmission Spetra from Data

Hannah Wakeford - University of Bristol

An introduction

Exoplanet distribution compared to the solar system 1000+ exoplanets have both Mass and Radius measurements

Transiting Exoplanet Atmospheres How do we measure the atmosphere of a transiting exoplanet?

Hannah Wakeford - University of Bristol

Hannah Wakeford - University of Bristol

Hannah Wakeford - University of Bristol

Hannah Wakeford - University of Bristol

Hannah Wakeford - University of Bristol

Fitting Your Light Curve Systematics Accurately treating systematics is key even when not apparent in the data

Systematic Model

Simple

Single systematic models

Common-mode wavelength independent model

Complex

Marginalization

Jitter decorrelation

GP

Hannah Wakeford - University of Bristol

The larger suite of models considered, the smaller the space assigned to the probability that none of your models can explain your data.

Panchromatic Transmission of WASP-39b

Clear Na and K features suggest an atmosphere with minimal high altitude cloud opacity

Prediction - — > strong H₂O features in near-IR

Hannah Wakeford - University of Bristol

Previous work and predictions

Panchromatic Transmission of WASP-39b

an atmosphere with minimal high altitude cloud opacity

Prediction ---> strong H₂O features in near-IR

Hannah Wakeford - University of Bristol

Previous work and predictions

Panchromatic Transmission of WASP-39b

Clear Na and K features suggest an atmosphere with minimal high altitude cloud opacity

Prediction ---> strong H₂O features in near-IR

Hannah Wakeford - University of Bristol

Previous work and predictions

HST/WFC3 IR grisms show three distinct H₂O absorption features with indication of super solar metallicity

Prediction - -> strong absorption by CO₂ in the IR with JWST

WASP-39b Panchromatic Transmission Spectrum ERS 1366 Transiting Exoplanet Community ERS Program

ERS Panchromatic Transmission of WASP-39b Discovery of SO₂ photochemistry in the atmosphere of WASP-39b 2002

Developed the SO₂ chemical pathway

Confirm SO₂ absorption at 2.6 σ in PRISM data & 4.5 o in G395H data

Stronger signatures of SO2 are expected with MIRI

Tsai, Lee et al. 2023, Nature

Hannah Wakeford - University of Bristol

Net: $H_2S + 2H_2O \rightarrow SO_2 + 3H_2$

Panchromatic Transmission of WASP-39b [Ancillary] NIRSpec/G395H High-Resolution CO

Hannah Wakeford - University of Bristol

[Grant, Lothringer et al. 2023, ApJL]

Atmospheric Scale Height Height at which pressure decreases by a factor of e (exponent)

Hannah Wakeford - University of Bristol

Transiting Exoplanet Atmospheres How do we measure the atmosphere of a transiting exoplanet?

near-IR	JWST/MIRI	
IR	mid-IR	
Javelength		

Evaluate the impact of exoplanet aerosols The UV-Optical will play a core role in assessing aerosols in exoplanet spectra

Fairman, Wakeford & MacDonald (in prep)

Hannah Wakeford - University of Bristol

Aerosols will be impacted by Temperature, Chemistry, and Dynamics How do we measure the atmosphere of a transiting exoplanet?

Transiting Exoplanet Atmospheres How do we measure the atmosphere of a transiting exoplanet

What have we seen?

You can now find all these and more on NASA Exoplanet Archive!

Hannah Wakeford - University of Bristol

Atoms, Molecules, and Aerosols

Fairman, Wakeford & MacDonald (in prep)

Transiting Exoplanets with JWST: Cycle 1 & 2 111 individual exoplanets, +200 observation set-ups

Some high level thoughts:

- •Lots of love for NIRSpec/G395H observations
- •Multiple large programs looking at small worlds to understand small scale atmospheres
- •GTO & ERS performed comprehensive deep dives on a handful of planets (could we get this through a TAC?)
- Exciting complementary brown dwarf science
- •A HORDE of amazing ECRs leading the charge!!

A look to the future of exoplanets with JWST **Exciting science and opportunities**

We will see SO₂ again in places we don't expect

We will start to resolve cloud features in the IR and get a better handle on C/O importance

There is still a lot to learn about the instruments in different SNR regimes

Hannah Wakeford - University of Bristol

The international journal of science / 23 February 2023

naitie

nsights into exoplanets

